pybind.cc 48.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/ir.h"
54 55
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
56
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
58

59
#include "paddle/fluid/string/to_string.h"
60

D
Dong Zhihong 已提交
61
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
62
#ifndef _WIN32
Y
Yi Wang 已提交
63
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
64
#endif
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
67 68
#endif

M
minqiyang 已提交
69 70
#include "pybind11/stl.h"

71 72 73 74
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
75 76 77
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

78
namespace paddle {
79
namespace pybind {
80
bool IsCompiledWithCUDA() {
81
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
82 83 84 85 86 87
  return false;
#else
  return true;
#endif
}

88
bool IsCompiledWithBrpc() {
89
#ifndef PADDLE_WITH_DISTRIBUTE
90 91
  return false;
#endif
92 93 94 95 96 97

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
98 99
}

Y
update  
Yancey1989 已提交
100
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
101
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
102 103 104 105 106 107
  return true;
#else
  return false;
#endif
}

108
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
109 110 111
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
112
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
113
  m.doc() = "C++ core of PaddlePaddle";
114

115 116 117 118
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

119
  BindException(&m);
Y
Yu Yang 已提交
120

S
sneaxiy 已提交
121
  m.def(
S
sneaxiy 已提交
122
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
123 124 125 126
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
127 128 129
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
130
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
131 132
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
133
      .def("_run_backward",
X
Xin Pan 已提交
134
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
135
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
136
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
137
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
138
      .def("_grad_ivar",
M
minqiyang 已提交
139
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
140
           py::return_value_policy::reference)
M
minqiyang 已提交
141
      .def("_copy_to",
P
Paddle CI 已提交
142
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
143 144 145 146 147
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
148
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
149
      .def("_copy_to",
P
Paddle CI 已提交
150
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
151 152 153 154 155
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
156
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
157
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
158
           py::return_value_policy::reference)
159 160 161 162 163 164
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
165 166 167
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
168
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
169
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
170
            self.SetStopGradient(stop_gradient);
171
          });
172

173
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
174 175 176 177 178 179 180 181
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
182 183 184 185 186 187 188
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
189 190 191 192 193 194 195
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
196 197
          py::return_value_policy::reference);

X
Xin Pan 已提交
198
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
199
  layer.def(py::init<>())
X
Xin Pan 已提交
200 201 202
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
203
      });
X
Xin Pan 已提交
204

X
polish  
Xin Pan 已提交
205
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
206
      .def(py::init<>())
X
Xin Pan 已提交
207 208
      .def_static(
          "apply",
X
Xin Pan 已提交
209
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
210 211 212 213
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
214 215 216 217 218
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
219

220 221
  BindTracer(&m);

222 223 224
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
225
      .def("_get_dims",
226
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
227
      .def("_set_dims",
Q
qijun 已提交
228
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
229
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
230
           })
Y
yuyang18 已提交
231
      .def("_set_layout",
D
dzhwinter 已提交
232 233 234
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
235
      .def("_alloc_float",
D
dzhwinter 已提交
236
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
237
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
238
           })
Y
yuyang18 已提交
239
      .def("_alloc_float",
Y
Yu Yang 已提交
240
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
241
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
242
           })
Y
yuyang18 已提交
243
      .def("_alloc_int",
Y
Yu Yang 已提交
244
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
245
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
246
           })
Y
yuyang18 已提交
247
      .def("_alloc_int",
D
dzhwinter 已提交
248
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
249
             self.mutable_data<int>(place);
Q
qijun 已提交
250
           })
Y
yuyang18 已提交
251
      .def("_alloc_int",
C
chengduoZH 已提交
252 253 254
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
255
      .def("_alloc_float",
C
chengduoZH 已提交
256 257 258
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
259 260
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
261
      .def("set", PyCPUTensorSetFromArray<double>)
262
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
263
      .def("set", PyCPUTensorSetFromArray<bool>)
264
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
265
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
266
      .def("set", PyCPUTensorSetFromArray<int8_t>)
267
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
268 269
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
270
      .def("set", PyCUDATensorSetFromArray<double>)
271
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
272
      .def("set", PyCUDATensorSetFromArray<bool>)
273
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
274
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
275
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
276 277 278 279 280 281
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
282
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
283
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
284
#endif
285
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
286 287 288 289
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
290
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
291

X
Xin Pan 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
305
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
306
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
307
     columns, hence [5, 2].
X
Xin Pan 已提交
308 309 310

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
311 312
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
336 337
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
338 339 340 341 342 343 344 345 346 347 348 349 350 351
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
352
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
353 354 355 356 357
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
358
      .def("set_lod",
359
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
360
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
361
             LoD new_lod;
362 363
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
364 365
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
366
             self.set_lod(new_lod);
D
dangqingqing 已提交
367
           })
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
393
      // Set above comments of set_lod.
394 395 396 397 398 399 400 401 402 403 404 405 406
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
407 408
      });

Q
qijun 已提交
409 410 411 412 413 414 415 416 417 418 419
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
420 421
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
422 423
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
424 425 426 427 428 429 430 431 432
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
433
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
434
      .def("rows", [](SelectedRows &self) {
435 436 437 438 439
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
440
      });
Q
qijun 已提交
441

442
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
443 444 445

All parameter, weight, gradient are variables in Paddle.
)DOC")
446
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
447
      .def("set_int",
448 449
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
450 451 452 453 454 455 456
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
457
      .def("get_tensor",
458 459
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
460 461
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
462 463 464
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
465 466 467 468 469
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
470 471 472
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
473
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
474 475 476 477 478
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
479
#endif
Y
Refine  
Yu Yang 已提交
480 481 482 483 484
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
485
           py::return_value_policy::reference);
486

Y
Refine  
Yu Yang 已提交
487
  py::class_<framework::ReaderHolder>(m, "Reader", "")
488
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
489

S
sneaxiy 已提交
490 491 492 493
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
494 495
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
496
      .def("push",
S
sneaxiy 已提交
497
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
498
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
499
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
500
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
501
           })
S
sneaxiy 已提交
502 503 504 505
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
506

S
sneaxiy 已提交
507
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
508
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
509
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
510
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
511 512 513 514 515 516
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
517 518
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
519
              return holder->GetQueue();
S
sneaxiy 已提交
520
            },
S
sneaxiy 已提交
521
        py::return_value_policy::copy);
S
sneaxiy 已提交
522

S
sneaxiy 已提交
523
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
543 544
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
545
      .def("var",
546
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
547
             return self.Var(name);
Y
Yu Yang 已提交
548
           },
549
           py::return_value_policy::reference)
550
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
551
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
552
           py::return_value_policy::reference)
Y
Yu Yang 已提交
553
      .def("drop_kids", &Scope::DropKids);
554

S
sneaxiy 已提交
555 556 557 558 559 560 561 562
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
563 564
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
565 566
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
567 568 569 570 571 572 573 574 575 576
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
577 578
    return ret_values;
  });
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
595
  m.def("prune", [](const ProgramDesc &origin,
596
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
597
    ProgramDesc prog_with_targets(origin);
598
    for (const auto &t : targets) {
599
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
600
    }
601
    proto::ProgramDesc pruned_desc;
602
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
603
    return new ProgramDesc(pruned_desc);
604
  });
605 606 607 608
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
609 610 611
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
612 613
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
614
  // clang-format off
Y
Yu Yang 已提交
615
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
616 617
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
618
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
619 620 621
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
622
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
623
                      -> paddle::platform::DeviceContext* {
624
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
625
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
626
#else
Q
qijun 已提交
627
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
628
#endif
C
chengduoZH 已提交
629 630 631 632 633 634 635 636 637 638 639
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
640
// clang-format on
P
peizhilin 已提交
641
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
642 643
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
644
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
645 646 647 648 649 650 651 652 653 654 655 656
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
D
dzhwinter 已提交
657
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
658

659 660 661
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
662

C
chengduoZH 已提交
663
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
664 665 666 667 668 669
      .def("__init__",
           [](platform::CUDAPinnedPlace &) {
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
           })
C
chengduoZH 已提交
670 671
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
672 673 674 675 676 677 678
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
679
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
680
             self = gpu_place;
C
chengduoZH 已提交
681 682
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
683 684
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
685
      });
Y
Yu Yang 已提交
686

Y
Yu Yang 已提交
687 688 689
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
690
                    proto::OpDesc desc;
Y
Yu Yang 已提交
691 692 693 694 695
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
696
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
697
                  })
698
      .def("run",
699
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
700 701 702
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
703
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
704 705 706 707 708
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
709 710 711 712 713 714 715
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
716 717
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
718
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
719
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
720 721 722 723
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
724

F
fengjiayi 已提交
725
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
726
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
727
      .def("close", &Executor::Close)
S
sneaxiy 已提交
728 729 730 731 732
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
733

D
dzhwinter 已提交
734
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
735
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
736 737
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
738

739
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
740
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
741
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
742 743 744 745 746 747
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
748

749
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
750
  m.def("get_fetch_variable", framework::GetFetchVariable);
751
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
752

X
Xin Pan 已提交
753 754
  m.def("_is_program_version_supported", IsProgramVersionSupported);

755 756 757 758 759
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
760

Y
Yu Yang 已提交
761 762 763 764 765 766 767 768 769
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
770
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
771 772
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
789 790 791
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
792
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
793
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
794
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
795

P
peizhilin 已提交
796
#ifndef _WIN32
D
dangqingqing 已提交
797 798 799
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
800
#endif
P
peizhilin 已提交
801
#endif
Y
Yu Yang 已提交
802

803 804 805 806
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
807
      .value("kAll", platform::ProfilerState::kAll)
808 809 810 811 812 813 814 815 816 817 818 819 820
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
821
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
822
  m.def("reset_profiler", platform::ResetProfiler);
W
WangZhen 已提交
823 824 825 826 827
  m.def("get_pass", [](const py::bytes &binary_str) {
    std::string pass_type(binary_str);
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
828

829 830
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
831
      .def("has", &ir::Pass::Has)
832
      .def("set",
W
WangZhen 已提交
833 834 835 836
           [](ir::Pass &self, const std::string &attr_name,
              const ProgramDesc &attr) {
             return self.Set(attr_name, new ProgramDesc(attr));
           })
837
      .def(
838
          "set",
839 840 841
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
842 843
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
W
WangZhen 已提交
844
      .def("get_program", &ir::Pass::Get<ProgramDesc>)
F
flame 已提交
845 846 847 848
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
849
        optim_graph.release();
F
flame 已提交
850
      });
851

X
fix  
Xin Pan 已提交
852 853
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
854 855 856 857 858 859 860 861 862 863 864 865 866 867
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
868
  // -- python binds for parallel executor.
Y
yuyang18 已提交
869
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
870 871 872 873
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
874 875 876 877 878 879 880 881 882 883 884
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
885 886 887

        )DOC");

Y
yuyang18 已提交
888
  exec_strategy.def(py::init())
Y
yuyang18 已提交
889 890 891 892 893
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
894 895 896 897 898 899 900 901 902 903
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
904
      .def_property(
905 906 907 908
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
909 910 911 912
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
913 914 915 916 917
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
918 919 920 921
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
922 923 924 925 926 927 928
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
929 930 931 932 933 934 935 936 937 938 939
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
940 941 942 943 944 945
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
946

Y
yuyang18 已提交
947
  exec_strategy.def_property(
Y
yuyang18 已提交
948 949 950 951 952 953 954
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
955 956
      });

C
chengduo 已提交
957 958 959 960
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
961 962 963 964 965 966 967 968 969 970 971
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
972
)DOC");
Y
yuyang18 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
989
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
990
            self.reduce_ = strategy;
C
chengduo 已提交
991 992 993 994 995 996 997
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
998 999 1000 1001 1002
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1003
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1004
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1005 1006 1007 1008 1009 1010
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1011 1012 1013 1014
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1015
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1016
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1017 1018 1019 1020
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1021 1022 1023 1024 1025 1026
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1027
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1037
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1038 1039
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1040
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1041 1042 1043 1044 1045 1046
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1059 1060 1061 1062 1063 1064
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1065
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1066 1067 1068 1069 1070
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1085 1086 1087 1088
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1089 1090 1091 1092
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1093 1094 1095 1096
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1097
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1098
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1099 1100 1101 1102 1103
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1104 1105 1106

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1107
                  const std::string &, Scope *, std::vector<Scope *> &,
1108
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1109 1110 1111 1112
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1113 1114 1115 1116 1117
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1118 1119 1120 1121
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1122 1123 1124 1125 1126 1127
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1128

1129
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1130
  BindAsyncExecutor(&m);
F
flame 已提交
1131 1132
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1133
  BindInferenceApi(&m);
L
Luo Tao 已提交
1134
}
1135
}  // namespace pybind
1136
}  // namespace paddle