Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5e928e57
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5e928e57
编写于
12月 27, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
try unify Executor and ParallelExecutor
test=develop
上级
a1e60ab1
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
248 addition
and
50 deletion
+248
-50
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+3
-3
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-2
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+118
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+96
-8
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+5
-3
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+13
-20
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+11
-12
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
5e928e57
...
...
@@ -193,8 +193,7 @@ ParallelExecutor::ParallelExecutor(
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
,
size_t
trainer_id
)
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
member_
->
use_cuda_
=
exec_strategy
.
use_cuda_
;
...
...
@@ -253,7 +252,8 @@ ParallelExecutor::ParallelExecutor(
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
member_
->
places_
,
nccl_id
,
build_strategy
.
num_trainers_
,
build_strategy
.
trainer_id_
));
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
5e928e57
...
...
@@ -50,8 +50,7 @@ class ParallelExecutor {
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
=
1
,
size_t
trainer_id
=
0
);
const
BuildStrategy
&
build_strategy
);
~
ParallelExecutor
();
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
5e928e57
...
...
@@ -1022,8 +1022,7 @@ All parameter, weight, gradient are variables in Paddle.
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
ProgramDesc
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&
,
size_t
,
size_t
>
())
const
ExecutionStrategy
&
,
const
BuildStrategy
&>
())
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
// of vec<Scope*> will be freed by Python GC. We can only return Scope*
...
...
python/paddle/fluid/compiler.py
0 → 100644
浏览文件 @
5e928e57
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
multiprocessing
import
os
import
six
from
..
import
compat
as
cpt
from
.
import
core
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
def
_place_obj
(
place
):
p
=
core
.
Place
()
p
.
set_place
(
place
)
return
p
class
_ProgramCompiler
(
object
):
def
__init__
(
self
,
program
):
self
.
_program
=
program
self
.
_compiled
=
False
self
.
_is_data_parallel
=
False
def
_with_data_parallel
(
self
,
loss_name
=
None
,
build_strategy
=
None
,
exec_strategy
=
None
):
assert
not
self
.
_is_data_parallel
,
"Already compiled with parallel."
self
.
_is_data_parallel
=
True
self
.
_build_strategy
=
build_strategy
self
.
_exec_strategy
=
exec_strategy
self
.
_loss_name
=
loss_name
return
self
def
_compile_data_parallel
(
self
):
self
.
_places
=
[]
self
.
_local_scopes
=
[]
if
self
.
_exec_strategy
is
None
:
self
.
_exec_strategy
=
ExecutionStrategy
()
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
self
.
_exec_strategy
.
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
)
if
self
.
_exec_strategy
.
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())
]
self
.
_places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
self
.
_places
,
"no place for execution"
if
self
.
_exec_strategy
.
num_threads
==
0
:
if
self
.
_exec_strategy
.
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
self
.
_exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_exec_strategy
.
num_threads
=
cpu_num
*
2
trainers_endpoints
=
self
.
_program
.
_trainers_endpoints
if
self
.
_build_strategy
.
num_trainers
>
1
and
trainers_endpoints
:
assert
self
.
_build_strategy
.
num_trainers
==
len
(
trainers_endpoints
),
"num_trainers == len(end_points)"
self
.
_build_strategy
.
trainers_endpoints
=
trainers_endpoints
self
.
_persistable_vars
=
set
([
cpt
.
to_text
(
v
.
name
)
for
v
in
[
var
for
var
in
self
.
_program
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
])
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
return
core
.
ParallelExecutor
(
places
,
self
.
_persistable_vars
,
self
.
_program
.
desc
,
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
self
.
_scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
)
def
_compile
(
self
,
scope
,
place
):
if
self
.
_compiled
:
return
self
self
.
_compiled
=
True
self
.
_scope
=
scope
self
.
_place
=
place
if
self
.
_is_data_parallel
:
self
.
_executor
=
self
.
_compile_data_parallel
()
else
:
p
=
_place_obj
(
self
.
_place
)
self
.
_executor
=
core
.
Executor
(
p
)
return
self
python/paddle/fluid/executor.py
浏览文件 @
5e928e57
...
...
@@ -14,11 +14,15 @@
from
__future__
import
print_function
import
os
import
multiprocessing
import
numpy
as
np
import
contextlib
import
six
from
.framework
import
Program
,
default_main_program
,
Variable
from
.
import
core
from
.
import
compiler
from
..
import
compat
as
cpt
__all__
=
[
'Executor'
,
'global_scope'
,
'scope_guard'
]
...
...
@@ -275,11 +279,8 @@ class Executor(object):
def
__init__
(
self
,
place
):
self
.
place
=
place
p
=
core
.
Place
()
p
.
set_place
(
place
)
self
.
executor
=
core
.
Executor
(
p
)
self
.
program_caches
=
dict
()
self
.
executor
=
None
self
.
_closed
=
False
def
_get_program_cache
(
self
,
program_cache_key
):
...
...
@@ -361,6 +362,7 @@ class Executor(object):
You can no long use this executor after calling this method.
For the distributed training, this method would free the resource on PServers related to
the current Trainer.
TODO(panyx0718): Why ParallelExecutor doesn't have close?
Example:
>>> cpu = core.CPUPlace()
...
...
@@ -368,10 +370,58 @@ class Executor(object):
>>> ...
>>> exe.close()
"""
if
not
self
.
_closed
:
if
not
self
.
_closed
and
self
.
executor
:
self
.
executor
.
close
()
self
.
_closed
=
True
def
_run_parallel
(
self
,
exe
,
scope
,
feed
=
None
,
fetch_list
=
None
,
return_numpy
=
True
):
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
for
feed_name
in
feed
:
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be splitted
# it is fast in CPU
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
exe
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
elif
isinstance
(
feed
,
list
)
or
isinstance
(
feed
,
tuple
):
if
len
(
feed
)
!=
len
(
self
.
_places
):
raise
ValueError
(
"Feed a list of tensor, the list should be the same size as places"
)
res
=
list
()
for
i
,
each
in
enumerate
(
feed
):
if
not
isinstance
(
each
,
dict
):
raise
TypeError
(
"Each element of feed list should be a dict"
)
res_dict
=
dict
()
for
feed_name
in
each
:
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
tensor
,
self
.
_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
res
.
append
(
res_dict
)
exe
.
feed_tensors_into_local_scopes
(
res
)
fetch_var_name
=
'@FETCHED_VAR_NAME@'
exe
.
run
(
fetch_list
,
fetch_var_name
)
arr
=
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
if
return_numpy
:
return
as_numpy
(
arr
)
return
[
arr
[
i
]
for
i
in
range
(
len
(
arr
))]
def
run
(
self
,
program
=
None
,
feed
=
None
,
...
...
@@ -428,6 +478,47 @@ class Executor(object):
if
self
.
_closed
:
raise
RuntimeError
(
"Attempted to use a closed Executor"
)
if
scope
is
None
:
scope
=
global_scope
()
compiled
=
isinstance
(
program
,
compiler
.
_ProgramCompiler
)
if
not
compiled
:
p
=
core
.
Place
()
p
.
set_place
(
self
.
place
)
self
.
executor
=
core
.
Executor
(
p
)
return
self
.
_run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
fetch_var_name
=
fetch_var_name
,
scope
=
scope
,
return_numpy
=
return_numpy
,
use_program_cache
=
use_program_cache
)
program
.
_compile
(
scope
,
self
.
place
)
self
.
executor
=
program
.
_executor
if
program
.
_is_data_parallel
:
return
self
.
_run_parallel
(
exe
=
program
.
_executor
,
scope
=
scope
,
feed
=
feed
,
fetch_list
=
fetch_list
,
return_numpy
=
return_numpy
)
else
:
return
self
.
_run
(
program
.
_program
,
feed
=
feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
fetch_var_name
=
fetch_var_name
,
scope
=
scope
,
return_numpy
=
return_numpy
,
use_program_cache
=
use_program_cache
)
def
_run
(
self
,
program
,
feed
,
fetch_list
,
feed_var_name
,
fetch_var_name
,
scope
,
return_numpy
,
use_program_cache
):
if
feed
is
None
:
feed
=
{}
if
not
isinstance
(
feed
,
dict
):
...
...
@@ -444,9 +535,6 @@ class Executor(object):
"Executor requires Program as its Parameter. But you passed in %s"
%
(
type
(
program
)))
if
scope
is
None
:
scope
=
global_scope
()
cache_key
=
_get_program_cache_key
(
feed
,
fetch_list
)
if
use_program_cache
:
cached_program
=
self
.
_get_program_cache
(
cache_key
)
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
5e928e57
...
...
@@ -167,9 +167,8 @@ class ParallelExecutor(object):
# step7: init ParallelExecutor
self
.
executor
=
core
.
ParallelExecutor
(
places
,
persistable_vars
,
main
.
desc
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
num_trainers
,
trainer_id
)
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
)
self
.
scope
=
scope
...
...
@@ -292,3 +291,6 @@ class ParallelExecutor(object):
@
property
def
device_count
(
self
):
return
len
(
self
.
_places
)
def
close
(
self
):
pass
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
5e928e57
...
...
@@ -19,6 +19,7 @@ import os
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
compiler
import
time
import
numpy
as
np
import
math
...
...
@@ -44,15 +45,8 @@ class TestParallelExecutorBase(unittest.TestCase):
optimizer
=
fluid
.
optimizer
.
Adam
,
use_fast_executor
=
False
,
enable_sequential_execution
=
False
):
def
run_executor
(
exe
,
feed
,
fetch_list
,
program
=
None
):
if
isinstance
(
exe
,
fluid
.
ParallelExecutor
):
res
=
exe
.
run
(
fetch_list
=
fetch_list
,
feed
=
feed
)
elif
isinstance
(
exe
,
fluid
.
Executor
):
if
program
is
None
:
program
=
fluid
.
default_main_program
()
res
=
exe
.
run
(
program
=
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
else
:
raise
ValueError
(
'Unkown type exe'
)
def
run_executor
(
exe
,
binary
,
feed
,
fetch_list
):
res
=
exe
.
run
(
binary
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
res
main
=
fluid
.
Program
()
...
...
@@ -72,8 +66,8 @@ class TestParallelExecutorBase(unittest.TestCase):
fluid
.
memory_optimize
(
main
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
startup_
exe
=
fluid
.
Executor
(
place
)
startup_
exe
.
run
(
startup
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
if
use_fast_executor
:
...
...
@@ -86,15 +80,13 @@ class TestParallelExecutorBase(unittest.TestCase):
build_strategy
.
enable_sequential_execution
=
enable_sequential_execution
if
use_cuda
and
core
.
is_compiled_with_cuda
():
build_strategy
.
remove_unnecessary_lock
=
True
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
use_cuda
,
binary
=
compiler
.
_ProgramCompiler
(
main
).
_with_data_parallel
(
loss_name
=
loss
.
name
,
exec_strategy
=
exec
_strategy
,
build_strategy
=
build
_strategy
)
build_strategy
=
build
_strategy
,
exec_strategy
=
exec
_strategy
)
else
:
exe
=
fluid
.
Executor
(
place
=
place
)
binary
=
compiler
.
_ProgramCompiler
(
main
)
if
batch_size
is
not
None
:
batch_size
*=
fluid
.
core
.
get_cuda_device_count
(
...
...
@@ -102,13 +94,14 @@ class TestParallelExecutorBase(unittest.TestCase):
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
begin
=
time
.
time
()
first_loss
,
=
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
for
i
in
range
(
iter
):
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[])
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[])
last_loss
,
=
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
end
=
time
.
time
()
if
batch_size
is
not
None
:
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
5e928e57
...
...
@@ -26,6 +26,7 @@ import pickle
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
RUN_STEP
=
10
DEFAULT_BATCH_SIZE
=
2
...
...
@@ -104,8 +105,8 @@ class TestDistRunnerBase(object):
else
:
place
=
fluid
.
CPUPlace
()
startup_
exe
=
fluid
.
Executor
(
place
)
startup_
exe
.
run
(
fluid
.
default_startup_program
())
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
...
...
@@ -125,19 +126,16 @@ class TestDistRunnerBase(object):
mypass
.
set_int
(
"num_repeats"
,
args
.
batch_merge_repeat
)
if
args
.
update_method
==
"nccl2"
:
num_trainers
=
len
(
args
.
endpoints
.
split
(
","
))
trainer_id
=
args
.
trainer_id
build_stra
.
num_trainers
=
len
(
args
.
endpoints
.
split
(
","
))
build_stra
.
trainer_id
=
args
.
trainer_id
else
:
num_trainers
=
1
trainer_id
=
0
build_stra
.
num_trainers
=
1
build_stra
.
trainer_id
=
0
exe
=
fluid
.
ParallelExecutor
(
args
.
use_cuda
,
binary
=
compiler
.
_ProgramCompiler
(
trainer_prog
).
_with_data_parallel
(
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
,
build_strategy
=
build_stra
,
num_trainers
=
num_trainers
,
trainer_id
=
trainer_id
)
exec_strategy
=
strategy
)
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
...
...
@@ -160,7 +158,8 @@ class TestDistRunnerBase(object):
out_losses
=
[]
for
_
in
six
.
moves
.
xrange
(
RUN_STEP
):
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
loss
,
=
exe
.
run
(
binary
,
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
get_data
()))
out_losses
.
append
(
loss
[
0
])
if
six
.
PY2
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录