nn.py 328.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
62
    'sequence_unpad',
X
Xin Pan 已提交
63 64 65 66 67 68 69 70
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
71
    'sequence_slice',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
89
    'group_norm',
X
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
103
    'roi_align',
X
Xin Pan 已提交
104 105 106 107
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
108
    'resize_nearest',
X
Xin Pan 已提交
109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
115
    'selu',
X
Xin Pan 已提交
116 117 118
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
119
    'margin_rank_loss',
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
163
    'space_to_depth',
W
whs 已提交
164
    'affine_grid',
S
sneaxiy 已提交
165
    'sequence_reverse',
166
    'affine_channel',
B
barrierye 已提交
167
    'similarity_focus',
M
minqiyang 已提交
168
    'hash',
D
dengkaipeng 已提交
169
    'grid_sampler',
G
gmcather 已提交
170 171
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
172
    'bilinear_tensor_product',
C
chengduo 已提交
173 174
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
175
    'lstm',
176
    'psroi_pool',
Y
Yu Yang 已提交
177 178
]

J
jerrywgz 已提交
179 180
kIgnoreIndex = -100

Y
Yu Yang 已提交
181 182 183 184 185 186 187

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
188
       is_test=False,
189
       name=None):
Y
Yu Yang 已提交
190
    """
191
    **Fully Connected Layer**
Y
Yu Yang 已提交
192

193 194 195 196 197 198 199 200
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
201
    to the output as well.
C
caoying03 已提交
202

C
caoying03 已提交
203
    This process can be formulated as follows:
204 205 206

    .. math::

207
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
208 209 210

    In the above equation:

C
caoying03 已提交
211 212 213 214
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
215
    * :math:`Act`: The activation function.
C
caoying03 已提交
216
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
217 218

    Args:
R
ranqiu 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
234 235
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
236
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
237
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
238
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
239

240
    Returns:
F
fengjiayi 已提交
241
        Variable: The transformation result.
242 243

    Raises:
C
caoying03 已提交
244
        ValueError: If rank of the input tensor is less than 2.
245 246 247 248

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
249
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
250
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
251
    """
C
caoying03 已提交
252

C
caoying03 已提交
253
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
254 255 256 257

    dtype = helper.input_dtype()

    mul_results = []
258 259
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
260 261 262
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
263

Y
Yu Yang 已提交
264
        w = helper.create_parameter(
265
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
266
        tmp = helper.create_variable_for_type_inference(dtype)
267
        helper.append_op(
268 269 270
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
271
            outputs={"Out": tmp},
M
mozga-intel 已提交
272 273
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
274 275 276 277
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
278
    else:
X
Xin Pan 已提交
279
        pre_bias = helper.create_variable_for_type_inference(dtype)
280
        helper.append_op(
281 282 283
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
284
            attrs={"use_mkldnn": False})
285 286 287 288
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
289 290


291 292 293
def embedding(input,
              size,
              is_sparse=False,
294
              is_distributed=False,
295 296 297
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
298
    """
299 300
    **Embedding Layer**

301
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
302 303
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
304 305 306

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
307 308

    Args:
309 310 311 312 313
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
314
        is_distributed(bool): Whether to run lookup table from remote parameter server.
315 316
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
317
            with zeros whenever lookup encounters it in :attr:`input`. If
318
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
319 320
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
321
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
322

323 324 325
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
326

327 328
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
329

C
chengduoZH 已提交
330
          dict_size = len(dataset.ids)
331
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
332
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
333 334 335
    """

    helper = LayerHelper('embedding', **locals())
336 337 338
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
339 340
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
341 342
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
343
    tmp = helper.create_variable_for_type_inference(dtype)
344 345
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
346 347 348 349 350
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
351 352 353
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
354
            'remote_prefetch': remote_prefetch,
355 356
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
357 358 359
    return tmp


W
wopeizl 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
376

W
wopeizl 已提交
377 378 379 380 381 382 383 384 385 386 387
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
388

W
wopeizl 已提交
389 390 391 392
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
393

W
wopeizl 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
480 481


P
phlrain 已提交
482 483 484 485 486 487
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
488
         dropout_prob=0.0,
P
phlrain 已提交
489 490 491 492 493
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
494
    """
P
phlrain 已提交
495
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
496 497 498 499 500

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
540 541
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
542 543 544 545 546 547
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
548
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
549

L
liuhongyu 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
575
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
576 577 578 579 580 581
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
582 583 584
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
644 645 646 647 648 649 650 651 652 653 654
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
655 656
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
657 658 659
    """
    **Dynamic LSTMP Layer**

660 661 662 663 664 665
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
666 667 668 669 670

    The formula is as follows:

    .. math::

671
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
672

673
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
674

675
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
676

677
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
678

679
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
680

681
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
682

683
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
684

Y
Yibing Liu 已提交
685 686 687 688 689 690
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
691
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
692
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
693
          bias vector).
Y
Yibing Liu 已提交
694 695 696
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
697
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
698
    * :math:`h`: The hidden state.
699
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
700 701
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
702
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
703
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
704
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
705 706
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
707 708 709 710

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
711

Y
Yibing Liu 已提交
712 713 714 715 716 717 718 719 720 721 722 723
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
724
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
725 726
                               hidden-hidden weight and projection weight.

727 728
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
729 730
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
731 732
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
733
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
734 735 736 737 738

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
739
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
740 741 742 743 744 745
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
746
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
747 748 749
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
750
                                - The shape is (1 x 7D).
C
chengduo 已提交
751 752 753 754 755

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
756 757 758 759 760 761 762 763 764
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
765
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
766 767
                              default "tanh".
        proj_activation(str): The activation for projection output.
768
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
769 770
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
771 772
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
773 774

    Returns:
775 776 777 778
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
779 780

    Examples:
781

Y
Yibing Liu 已提交
782 783
        .. code-block:: python

784 785 786 787
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
788
            hidden_dim, proj_dim = 512, 256
789
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
790
                                     act=None, bias_attr=None)
791 792 793
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
794 795 796 797
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
798
    """
799

C
chengduo 已提交
800
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
801
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
802
    size = size // 4
Y
Yibing Liu 已提交
803 804 805 806 807 808 809 810 811 812
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
813 814 815 816 817 818
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
847 848 849 850 851 852 853 854 855
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
856
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
857

858
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
859
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
860

G
guosheng 已提交
861 862 863 864 865 866 867 868 869
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
870

G
guosheng 已提交
871
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
872

G
guosheng 已提交
873
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
874 875
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
876 877 878 879
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
880
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
881 882

    Args:
883 884
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
885
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
886
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
887 888
            is the hidden size.
        size(int): The dimension of the gru cell.
889
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
890 891
            hidden-hidden weight matrix. Note:

892
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
893
              :math:`D` is the hidden size.
894
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
895
              The first part are weights of the update gate and reset gate with
896
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
897
              candidate hidden state with shape :math:`(D \\times D)`.
898 899 900 901 902

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
903
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
904
            the bias in the update gate, reset gate and candidate calculations.
905 906 907
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
908 909
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
910
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
911 912 913
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
914
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
915
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
916 917 918 919
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
920 921

    Returns:
G
guosheng 已提交
922
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
923
            and sequence length is the same with the input.
924

G
guosheng 已提交
925
    Examples:
926

G
guosheng 已提交
927 928
        .. code-block:: python

929 930 931 932
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
933
            hidden_dim = 512
934
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
935
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
936 937 938 939 940 941 942 943 944
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
945
    batch_size = input.shape[0]
G
guosheng 已提交
946
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
947
    if h_0:
G
guosheng 已提交
948
        assert h_0.shape == (
Y
Yancey 已提交
949 950 951
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
952

X
Xin Pan 已提交
953 954 955 956
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
975 976 977
def gru_unit(input,
             hidden,
             size,
978 979
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
980
             activation='tanh',
981
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
982
    """
983
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
984

985 986
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
987

988
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
989

990
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
991

992
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
993 994

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
995 996 997
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
998 999
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1000 1001
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1002 1003 1004
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1005 1006 1007

    Args:
        input (Variable): The fc transformed input value of current step.
1008
        hidden (Variable): The hidden value of gru unit from previous step.
1009
        size (integer): The input dimension value.
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1024
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1025
            the bias in the update gate, reset gate and candidate calculations.
1026 1027 1028
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1029 1030
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1031 1032 1033 1034
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1035

1036 1037 1038 1039 1040 1041
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1042

1043
             # assuming we have x_t_data and prev_hidden of size=10
1044
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1045 1046
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1059
    size = size // 3
Y
Yu Yang 已提交
1060 1061

    # create weight
1062 1063
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1064

X
Xin Pan 已提交
1065 1066 1067
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1068
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1069
    # create bias
1070
    if helper.bias_attr:
Y
Yu Yang 已提交
1071 1072 1073
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1074
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1075 1076 1077

    helper.append_op(
        type='gru_unit',
1078
        inputs=inputs,
Y
Yu Yang 已提交
1079 1080 1081 1082 1083 1084
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1085 1086
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1087 1088 1089 1090 1091
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1092
@templatedoc()
1093
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1094 1095 1096 1097 1098 1099 1100
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1101
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1102 1103 1104 1105
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1106 1107 1108
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1109 1110

    """
Y
Yu Yang 已提交
1111 1112 1113 1114 1115 1116
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1117 1118 1119 1120 1121 1122 1123 1124
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1140 1141 1142 1143
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1144

W
wopeizl 已提交
1145 1146
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1147

W
wopeizl 已提交
1148
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1149

W
wopeizl 已提交
1150
        label(${label_type}): ${label_comment}
1151

W
wopeizl 已提交
1152 1153
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1154

W
wopeizl 已提交
1155 1156
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1157

W
wopeizl 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1168
                "Transition": transition,
W
wopeizl 已提交
1169 1170
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1171

W
wopeizl 已提交
1172
    return viterbi_path
Y
Yu Yang 已提交
1173 1174


Y
yi.wu 已提交
1175
@templatedoc()
F
fengjiayi 已提交
1176
def cos_sim(X, Y):
Y
Yu Yang 已提交
1177
    """
Y
yi.wu 已提交
1178 1179 1180
    ${comment}

    Args:
1181 1182
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1183

Y
yi.wu 已提交
1184
    Returns:
1185
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1186
    """
F
fengjiayi 已提交
1187
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1188 1189 1190
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1201 1202 1203 1204 1205
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1206
            dropout_implementation="downgrade_in_infer"):
1207 1208 1209 1210 1211
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1212
    training. The dropout operator randomly sets (according to the given dropout
1213 1214 1215 1216
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1217 1218
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1219 1220 1221 1222 1223 1224 1225
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1237
                                           dropout op can be removed from the program.
P
phlrain 已提交
1238
                                           the program will be efficient
1239

P
phlrain 已提交
1240

1241 1242

    Returns:
1243
        Variable: A tensor variable is the shape with `x`.
1244 1245

    Examples:
1246

1247 1248
        .. code-block:: python

1249 1250
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1251 1252
    """

F
fengjiayi 已提交
1253
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1254 1255 1256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1257 1258 1259 1260

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1261 1262 1263 1264 1265
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1266 1267 1268 1269
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1270 1271
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1272
        })
1273 1274 1275
    return out


J
jerrywgz 已提交
1276
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1277
    """
Y
Yibing Liu 已提交
1278 1279
    **Cross Entropy Layer**

1280 1281 1282
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1283 1284

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1285
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1286

Y
Yibing Liu 已提交
1287
        .. math::
Y
yangyaming 已提交
1288

Y
Yibing Liu 已提交
1289 1290 1291
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1292 1293
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1294 1295 1296 1297 1298

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1299
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1300 1301 1302
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1303 1304
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1305
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1306

Y
Yibing Liu 已提交
1307
    Args:
Y
yangyaming 已提交
1308
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1309 1310 1311 1312
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1313
        label (Variable|list): the ground truth which is a 2-D tensor. When
1314 1315 1316 1317
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1318
        soft_label (bool): a flag indicating whether to
1319
                                           interpretate the given labels as soft
1320
                                           labels. Default: `False`.
M
minqiyang 已提交
1321 1322
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1323
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1324 1325 1326 1327 1328

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1329 1330 1331 1332 1333
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1334 1335 1336 1337 1338 1339

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1340
    """
F
fengjiayi 已提交
1341
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1342
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1343 1344 1345 1346 1347
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1348 1349
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1350 1351 1352
    return out


F
frankwhzhang 已提交
1353
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1354 1355 1356
    """
    Bayesian Personalized Ranking Loss Operator.

1357
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1358 1359 1360 1361 1362 1363
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1364 1365 1366 1367 1368 1369
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1370 1371
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1372 1373 1374
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1375 1376 1377
    Examples:
        .. code-block:: python

1378
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1379
    """
1380 1381 1382 1383 1384 1385

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1386
                'Label': [label]},
1387 1388 1389 1390
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1391
def square_error_cost(input, label):
Y
Yu Yang 已提交
1392
    """
1393 1394
    **Square error cost layer**

1395 1396
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1411 1412
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1413 1414

    Returns:
G
guosheng 已提交
1415
        Variable: The tensor variable storing the element-wise squared error \
1416
                  difference of input and label.
1417 1418 1419 1420 1421 1422 1423 1424

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1425
    """
F
fengjiayi 已提交
1426
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1427
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1428 1429 1430 1431 1432 1433
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1434
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1435
    helper.append_op(
F
fengjiayi 已提交
1436 1437
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1438 1439 1440
    return square_out


Y
yi.wu 已提交
1441
@templatedoc()
Y
Yu Yang 已提交
1442 1443 1444 1445
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1446
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1447
    """
Y
yi.wu 已提交
1448
    **Chunk Evaluator**
Y
yi.wu 已提交
1449

Y
yangyaming 已提交
1450
    This function computes and outputs the precision, recall and
1451
    F1-score of chunk detection.
Y
yi.wu 已提交
1452

Y
yi.wu 已提交
1453 1454 1455 1456 1457 1458 1459 1460
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1461

Y
yi.wu 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1487

Y
yi.wu 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1512
    Args:
1513 1514 1515 1516 1517
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1518

Y
yi.wu 已提交
1519
    Returns:
Y
update  
yi.wu 已提交
1520 1521 1522
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1523

Y
yi.wu 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1536
    """
F
fengjiayi 已提交
1537
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1538 1539

    # prepare output
X
Xin Pan 已提交
1540 1541 1542 1543 1544 1545 1546
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1547 1548 1549 1550 1551 1552 1553 1554

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1555 1556 1557 1558
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1559 1560 1561
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1562 1563
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1564
        })
1565 1566
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1567 1568


1569
@templatedoc()
Y
Yu Yang 已提交
1570 1571 1572 1573 1574 1575 1576
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1577 1578
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1579 1580 1581 1582
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1583 1584 1585 1586 1587 1588 1589

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1603

1604 1605
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1606 1607 1608 1609 1610 1611 1612
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1613
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1624
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1631
def sequence_softmax(input, use_cudnn=False, name=None):
1632 1633 1634
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1635
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1652 1653 1654
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1667 1668
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1669
    softmax_out = helper.create_variable_for_type_inference(dtype)
1670 1671 1672 1673 1674 1675 1676 1677
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1678
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1679
    """
1680
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1681
    has the same shape as the input.
Q
qiaolongfei 已提交
1682

1683 1684 1685 1686 1687 1688
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1689
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1690 1691 1692 1693 1694 1695 1696

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1697
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1698 1699 1700 1701 1702 1703 1704 1705

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1706 1707 1708
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1721 1722
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1723
    softmax_out = helper.create_variable_for_type_inference(dtype)
1724 1725 1726 1727 1728 1729 1730 1731
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1732 1733 1734
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1735 1736
           stride=1,
           padding=0,
1737
           dilation=1,
Y
Yu Yang 已提交
1738 1739 1740
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1741
           use_cudnn=True,
1742 1743
           act=None,
           name=None):
Y
Yu Yang 已提交
1744
    """
C
chengduoZH 已提交
1745
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1746 1747
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1748
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1749 1750 1751 1752 1753 1754 1755
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1756 1757 1758
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1759

1760
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1761

C
chengduoZH 已提交
1762 1763
    .. math::

C
refine  
chengduoZH 已提交
1764
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1765

T
tensor-tang 已提交
1766
    Where:
C
chengduoZH 已提交
1767

1768 1769 1770 1771 1772
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1773
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1774 1775 1776

    Example:

1777 1778
        - Input:

W
weixing02 已提交
1779
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1780

W
weixing02 已提交
1781
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1782

1783
        - Output:
T
tensor-tang 已提交
1784

W
weixing02 已提交
1785
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1786

C
chengduoZH 已提交
1787
        Where
1788 1789

        .. math::
C
chengduoZH 已提交
1790

W
weixing02 已提交
1791 1792
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1793 1794

    Args:
1795
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1796
        num_filters(int): The number of filter. It is as same as the output
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1825 1826
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1827 1828
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1829
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1830
            will be named automatically. Default: None
C
chengduoZH 已提交
1831 1832

    Returns:
G
guosheng 已提交
1833
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1834 1835
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1836
    Raises:
1837 1838
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1839

C
chengduoZH 已提交
1840 1841 1842
    Examples:
        .. code-block:: python

1843 1844
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1845 1846 1847
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1848
    assert param_attr is not False, "param_attr should not be False here."
1849
    l_type = 'conv2d'
X
xzl 已提交
1850 1851
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1852
        l_type = 'depthwise_conv2d'
1853 1854 1855 1856

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1857 1858 1859 1860 1861
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1862
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1863

C
chengduoZH 已提交
1864 1865 1866
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1867
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1868

C
chengduoZH 已提交
1869 1870
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1871 1872

    input_shape = input.shape
M
minqiyang 已提交
1873
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1874 1875

    def _get_default_param_initializer():
C
chengduo 已提交
1876 1877
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1878 1879 1880 1881 1882 1883 1884 1885
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1886
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1902
    helper.append_op(
1903
        type=l_type,
Y
Yu Yang 已提交
1904 1905 1906 1907 1908
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1909 1910 1911
        attrs={
            'strides': stride,
            'paddings': padding,
1912
            'dilations': dilation,
C
chengduoZH 已提交
1913
            'groups': groups,
1914
            'use_cudnn': use_cudnn,
1915
            'use_mkldnn': False,
C
chengduoZH 已提交
1916
        })
Y
Yu Yang 已提交
1917 1918 1919 1920 1921 1922

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1940 1941 1942 1943 1944 1945
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1955 1956
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1957 1958 1959
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1960
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1986
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1987 1988
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1989
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1990 1991
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1992
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1993 1994
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1995
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1996 1997 1998 1999 2000 2001
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2012 2013
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2014 2015
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2016
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2017
            will be named automatically. Default: None.
C
chengduoZH 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2030 2031
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2032 2033 2034
    """

    l_type = 'conv3d'
C
chengduo 已提交
2035
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2046
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2060 2061 2062
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2063 2064 2065 2066 2067 2068 2069 2070
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2071
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2086
            'use_mkldnn': False
C
chengduoZH 已提交
2087 2088
        })

2089
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2090 2091 2092 2093

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2094
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2095
    """
Y
yangyaming 已提交
2096 2097 2098
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2110
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2111 2112 2113 2114 2115
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2116
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2117 2118 2119 2120 2121 2122 2123

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2124 2125
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2126

L
Luo Tao 已提交
2127 2128
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2129
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2130
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2131
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2132 2133 2134 2135 2136 2137 2138

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2139

Y
yangyaming 已提交
2140
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2141 2142 2143 2144 2145
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2146 2147
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2148
    """
F
fengjiayi 已提交
2149
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2150
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2151 2152
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2153 2154 2155 2156 2157 2158

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2159 2160
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2161

Y
yangyaming 已提交
2162 2163 2164 2165 2166
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2167 2168 2169
    return pool_out


C
add doc  
chengduoZH 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2189
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2190 2191 2192 2193 2194
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2195
def sequence_first_step(input):
L
Luo Tao 已提交
2196
    """
L
Luo Tao 已提交
2197
    This function gets the first step of sequence.
L
Luo Tao 已提交
2198 2199 2200 2201

    .. code-block:: text

       x is a 1-level LoDTensor:
2202
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2203 2204 2205 2206 2207
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2208
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2209
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2210

L
Luo Tao 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2220

Y
yangyaming 已提交
2221
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2222 2223 2224
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2225 2226 2227
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2228
def sequence_last_step(input):
L
Luo Tao 已提交
2229
    """
L
Luo Tao 已提交
2230
    This function gets the last step of sequence.
L
Luo Tao 已提交
2231 2232 2233 2234

    .. code-block:: text

       x is a 1-level LoDTensor:
2235
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2236 2237 2238 2239 2240
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2241
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2242
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2243

L
Luo Tao 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2253

Y
yangyaming 已提交
2254
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2255 2256 2257
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2258 2259 2260
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2261 2262 2263 2264
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2265
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2266 2267 2268 2269 2270
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2271

Y
Yibing Liu 已提交
2272 2273
	- Case:

2274
            Given the input Variable **input**:
2275

2276 2277 2278
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2279

2280
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2281

2282
            the output Variable will be
2283

2284 2285 2286
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2287 2288

    NOTE: The first dimension size of **input**, **offset** and **length**
2289
          should be equal. The **offset** should start from 0.
2290

Y
Yibing Liu 已提交
2291
    Args:
2292
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2293
                         sequences.
Y
Yibing Liu 已提交
2294 2295 2296 2297 2298 2299
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2300
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2311
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2312 2313 2314 2315
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2316
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2331
@templatedoc()
Y
Yu Yang 已提交
2332
def pool2d(input,
C
chengduoZH 已提交
2333 2334
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2335 2336
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2337
           global_pooling=False,
C
chengduoZH 已提交
2338
           use_cudnn=True,
2339
           ceil_mode=False,
2340 2341
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2342
    """
F
fengjiayi 已提交
2343
    ${comment}
2344 2345

    Args:
2346 2347 2348
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2349
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2350
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2351 2352
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2353
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2354 2355 2356 2357 2358 2359
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2360 2361 2362
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2363
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2364
                        layer will be named automatically.
2365
        exclusive (bool): Whether to exclude padding points in average pooling
2366
                          mode, default is true
F
fengjiayi 已提交
2367

2368
    Returns:
F
fengjiayi 已提交
2369
        Variable: The pooling result.
F
fengjiayi 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2383 2384 2385 2386
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2387
                            global_pooling=False)
Y
Yu Yang 已提交
2388 2389 2390 2391 2392
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2393

C
chengduoZH 已提交
2394 2395 2396 2397 2398
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2399 2400 2401 2402
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2403 2404
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2405

C
Add doc  
chengduoZH 已提交
2406
    l_type = 'pool2d'
2407 2408

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2409
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2410
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2411 2412

    helper.append_op(
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2424 2425
            "use_mkldnn": False,
            "exclusive": exclusive,
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2439 2440
           name=None,
           exclusive=True):
2441 2442
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2443
    pooling configurations mentioned in input parameters.
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2456
        exclusive (bool): Whether to exclude padding points in average pooling
2457
                          mode, default is true
2458

2459
    Returns:
2460
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2461 2462 2463 2464 2465
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2466

C
chengduoZH 已提交
2467 2468 2469 2470 2471
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2472 2473 2474
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2475

C
chengduoZH 已提交
2476 2477
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2478

2479 2480
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2481
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2482
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2483 2484

    helper.append_op(
2485
        type=l_type,
Y
Yu Yang 已提交
2486 2487 2488 2489 2490 2491 2492
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2493
            "paddings": pool_padding,
2494
            "use_cudnn": use_cudnn,
2495
            "ceil_mode": ceil_mode,
2496 2497
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2510
               data_layout='NCHW',
Y
Yang Yang 已提交
2511
               in_place=False,
2512 2513
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2514
               moving_variance_name=None,
2515
               do_model_average_for_mean_and_var=False,
2516 2517
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2518
    """
Q
qiaolongfei 已提交
2519 2520 2521 2522
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2523

Q
qiaolongfei 已提交
2524
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2525

Q
qiaolongfei 已提交
2526 2527
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2528 2529 2530
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2543

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2557
    Args:
Q
qiaolongfei 已提交
2558
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2559 2560 2561 2562
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2563 2564 2565 2566 2567 2568 2569 2570
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2571
        data_layout(string, default NCHW): NCHW|NHWC
2572
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2573 2574 2575 2576
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2577
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2578
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2579 2580 2581 2582 2583
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2584 2585

    Returns:
Q
qiaolongfei 已提交
2586
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2587 2588 2589 2590 2591 2592 2593

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2594
    """
C
chengduo 已提交
2595
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2616 2617 2618
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2619 2620

    bias = helper.create_parameter(
2621
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2622 2623 2624
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2625

2626 2627
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2628 2629 2630
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2631
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2632
        shape=param_shape,
2633 2634 2635 2636 2637 2638 2639
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2640
            trainable=False,
W
wanghaoshuang 已提交
2641
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2642
        shape=param_shape,
2643 2644
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2645 2646 2647 2648 2649 2650

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2651 2652 2653 2654
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2655

X
Xin Pan 已提交
2656 2657
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2675 2676 2677 2678
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2679
            "use_mkldnn": False,
2680 2681
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2682
        })
Y
Yu Yang 已提交
2683 2684 2685 2686

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2687
@templatedoc()
G
guosheng 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2698
    ${comment}
G
guosheng 已提交
2699 2700 2701

    The formula is as follows:

Y
yuyang18 已提交
2702
    ..  math::
G
guosheng 已提交
2703 2704 2705 2706 2707 2708 2709

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2710 2711 2712 2713 2714 2715 2716 2717
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2718

G
guosheng 已提交
2719 2720
    Args:
        input(Variable): The input tensor variable.
2721
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2722
            normalization. Default True.
2723
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2724 2725
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2726
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2727
            Default 1.
2728
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2729
            division by zero. Default 1e-05.
G
guosheng 已提交
2730
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2731 2732
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2733 2734
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2735
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2736 2737
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2738
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2739
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2740
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2741 2742 2743
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2744 2745

    Returns:
Y
yuyang18 已提交
2746
        ${y_comment}
G
guosheng 已提交
2747 2748 2749

    Examples:

Y
yuyang18 已提交
2750 2751 2752
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2768
    if shift:
G
guosheng 已提交
2769 2770 2771 2772 2773 2774
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2775 2776 2777 2778 2779
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2873 2874 2875 2876
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2877 2878 2879
                     padding=0,
                     stride=1,
                     dilation=1,
2880
                     groups=None,
C
caoying03 已提交
2881
                     param_attr=None,
2882
                     bias_attr=None,
C
chengduoZH 已提交
2883
                     use_cudnn=True,
2884
                     act=None,
C
caoying03 已提交
2885
                     name=None):
Y
Yu Yang 已提交
2886
    """
2887 2888 2889 2890 2891 2892 2893 2894
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2895 2896
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2897 2898 2899
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2900 2901 2902 2903 2904

    For each input :math:`X`, the equation is:

    .. math::

2905
        Out = \sigma (W \\ast X + b)
2906

2907
    Where:
2908 2909 2910

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2911 2912 2913 2914
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2915

2916 2917 2918 2919
    Example:

        - Input:

2920
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2921

2922
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2923 2924 2925

        - Output:

2926
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2927 2928

        Where
Y
Yu Yang 已提交
2929

2930 2931
        .. math::

2932 2933 2934 2935
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2936 2937

    Args:
2938 2939 2940 2941
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2942 2943 2944 2945
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2974
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2975 2976 2977
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2978
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2979
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2980 2981

    Returns:
2982
        Variable: The tensor variable storing the convolution transpose result.
2983 2984

    Raises:
2985 2986
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2987 2988 2989 2990

    Examples:
       .. code-block:: python

2991 2992
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2993
    """
C
chengduo 已提交
2994
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2995 2996 2997 2998 2999 3000 3001 3002
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3003 3004 3005
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3006 3007 3008
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3009

C
chengduoZH 已提交
3010 3011
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3012

Y
Yu Yang 已提交
3013 3014 3015 3016 3017
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3018

Y
Yu Yang 已提交
3019 3020
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3021

C
chengduoZH 已提交
3022
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3023
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3024
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3025
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3026
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3027 3028 3029
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3030

3031 3032 3033 3034 3035 3036 3037
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3038
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3039
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3040

Y
Yu Yang 已提交
3041 3042 3043
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3044
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3045
    helper.append_op(
3046
        type=op_type,
Y
Yu Yang 已提交
3047 3048
        inputs={'Input': [input],
                'Filter': [img_filter]},
3049
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3050
        attrs={
3051
            'output_size': output_size,
3052 3053 3054 3055 3056
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3057 3058
        })

3059 3060 3061
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3062 3063


3064
def conv3d_transpose(input,
Y
Yu Yang 已提交
3065 3066 3067
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3068 3069 3070
                     padding=0,
                     stride=1,
                     dilation=1,
3071
                     groups=None,
C
caoying03 已提交
3072
                     param_attr=None,
3073
                     bias_attr=None,
C
chengduoZH 已提交
3074
                     use_cudnn=True,
3075
                     act=None,
C
caoying03 已提交
3076
                     name=None):
Y
Yu Yang 已提交
3077
    """
3078
    **Convlution3D transpose layer**
3079

3080
    The convolution3D transpose layer calculates the output based on the input,
3081
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3082 3083 3084 3085 3086 3087
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3088 3089 3090
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3091 3092 3093 3094 3095

    For each input :math:`X`, the equation is:

    .. math::

3096
        Out = \sigma (W \\ast X + b)
3097 3098 3099

    In the above equation:

3100 3101
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3102 3103 3104 3105
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3106

3107 3108 3109 3110
    Example:

        - Input:

3111
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3112

3113
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3114 3115 3116

        - Output:

3117
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3118 3119

        Where
Y
Yu Yang 已提交
3120

3121 3122
        .. math::

3123 3124 3125
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3126 3127

    Args:
3128
        input(Variable): The input image with [N, C, D, H, W] format.
3129 3130 3131
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3132
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3133 3134
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3135
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3136 3137 3138
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3139 3140
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3141
        stride(int|tuple): The stride size. If stride is a tuple, it must
3142 3143
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3144
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3145 3146 3147
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3148 3149 3150 3151 3152
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3162 3163
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3164 3165
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3166 3167
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3168 3169

    Returns:
3170
        Variable: The tensor variable storing the convolution transpose result.
3171 3172

    Raises:
3173 3174
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3175 3176 3177 3178

    Examples:
       .. code-block:: python

3179 3180
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3181
    """
C
chengduo 已提交
3182
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3183 3184
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3185
    if not isinstance(input, Variable):
3186
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3187 3188
    input_channel = input.shape[1]

3189 3190 3191
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3192

C
chengduoZH 已提交
3193 3194 3195
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3196 3197 3198 3199 3200 3201
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3202 3203 3204
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3205

3206
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3207
                         padding[0] - 1) // dilation[0] + 1
3208
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3209
                         padding[1] - 1) // dilation[1] + 1
3210
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3211
                         padding[2] - 1) // dilation[2] + 1
3212
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3213
    else:
3214 3215
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3216

3217
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3218
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3219 3220 3221
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3222
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3223
    helper.append_op(
3224
        type=l_type,
Y
Yu Yang 已提交
3225 3226
        inputs={'Input': [input],
                'Filter': [img_filter]},
3227
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3228 3229 3230 3231
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3232
            'groups': groups,
C
chengduoZH 已提交
3233 3234
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3235

3236 3237
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3238
    return out
Y
yangyaming 已提交
3239 3240


Y
yangyaming 已提交
3241
def sequence_expand(x, y, ref_level=-1, name=None):
3242
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3243 3244 3245 3246
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3247 3248 3249 3250 3251

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3252
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3253
                x.data = [[a], [b], [c], [d]]
3254 3255 3256
                x.dims = [4, 1]

            y is a LoDTensor:
3257 3258
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3259

Y
yangyaming 已提交
3260
            ref_level: 0
3261

Y
yangyaming 已提交
3262
            then output is a 1-level LoDTensor:
3263
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3264
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3265 3266 3267 3268
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3269
                x.data = [[a], [b], [c]]
3270 3271 3272
                x.dims = [3, 1]

            y is a LoDTensor:
3273
                y.lod = [[2, 0, 3]]
3274

Y
yangyaming 已提交
3275
            ref_level: -1
3276

Y
yangyaming 已提交
3277 3278 3279
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3280 3281 3282
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3283 3284
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3285
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3286
                        will be named automatically.
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3297
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3298
    """
Y
yangyaming 已提交
3299
    helper = LayerHelper('sequence_expand', input=x, **locals())
3300
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3301
    tmp = helper.create_variable_for_type_inference(dtype)
3302
    helper.append_op(
Y
yangyaming 已提交
3303 3304 3305 3306 3307
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3308
    return tmp
3309 3310


C
chengduo 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3367
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3368 3369 3370 3371 3372 3373 3374 3375
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3376
@templatedoc()
3377
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3378 3379 3380 3381 3382
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3383 3384 3385
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3386
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3387 3388 3389 3390
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3391 3392 3393
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3394

F
fengjiayi 已提交
3395
    Returns:
M
minqiyang 已提交
3396
        Variable: The padded sequence batch and the original lengths before
3397
                  padding. All sequences has the same length.
M
minqiyang 已提交
3398

F
fengjiayi 已提交
3399 3400 3401 3402 3403 3404 3405
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3406
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3407
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3408 3409 3410 3411 3412
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3413 3414
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3415 3416 3417 3418

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3419 3420 3421 3422 3423 3424
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3425 3426
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3427
        attrs={'padded_length': maxlen})
3428
    return out, length
F
fengjiayi 已提交
3429 3430


3431
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3432
    """
3433
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3434

3435 3436
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3446 3447 3448
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3449
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3450 3451 3452 3453 3454 3455

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3456
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3457 3458 3459 3460 3461 3462

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3463 3464
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3479
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3491 3492 3493 3494 3495 3496 3497 3498 3499
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3500 3501
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3502 3503 3504

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3505 3506

    This layer does the search in beams for one time step. Specifically, it
3507 3508 3509 3510 3511 3512
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3513

3514 3515 3516 3517 3518 3519 3520 3521
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3522

3523
    Args:
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3549

3550
    Returns:
3551 3552
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3553 3554 3555 3556

    Examples:
        .. code-block:: python

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3574 3575 3576 3577
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3578 3579 3580
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3581 3582 3583 3584 3585

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3586
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3604 3605 3606 3607 3608 3609 3610
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3611

3612 3613 3614 3615 3616 3617 3618 3619 3620
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3621

3622 3623 3624 3625 3626 3627
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3628

3629 3630
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3631

3632 3633 3634 3635 3636 3637
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3638 3639
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3655 3656 3657 3658
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3659
              param_attr=None,
C
caoying03 已提交
3660 3661
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3662 3663 3664 3665
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3666
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3667

3668
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3669

3670
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3671

3672
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3673 3674 3675

            h_t & = o_t tanh(c_t)

3676 3677 3678 3679 3680 3681
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3682 3683 3684

        .. math::

3685
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3686 3687 3688 3689 3690 3691 3692 3693

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3694
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3695 3696

    Args:
Y
yangyaming 已提交
3697 3698 3699 3700 3701 3702
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3703
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3716 3717
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3718 3719

    Returns:
Y
yangyaming 已提交
3720
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3721 3722

    Raises:
3723 3724 3725 3726
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3727 3728 3729 3730 3731 3732

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3733
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3734
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3735
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3752
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3753 3754 3755 3756
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3757 3758
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3759 3760 3761
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3762
    size = cell_t_prev.shape[1]
3763
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3764 3765
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3766
                param_attr=param_attr,
3767
                bias_attr=bias_attr)
Y
yangyaming 已提交
3768
    dtype = x_t.dtype
X
Xin Pan 已提交
3769 3770
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3780
    return h, c
G
guosheng 已提交
3781 3782


C
caoying03 已提交
3783
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3784
    """
Y
yangyaming 已提交
3785
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3786 3787 3788

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3789
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3790 3791
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3792 3793
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3794
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3795
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3796
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3797 3798
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3799 3800 3801

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3802

G
guosheng 已提交
3803 3804 3805 3806 3807 3808
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3809
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3810 3811 3812 3813
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3814 3815 3816 3817

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3818
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3819 3820 3821
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3822 3823
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3824
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3825 3826
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3827 3828 3829 3830 3831
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3832
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3833 3834 3835 3836
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3837 3838


C
caoying03 已提交
3839
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3840
    """
Y
Yibing Liu 已提交
3841
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3842 3843 3844

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3845 3846 3847
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3848
            must be in the range :math:`[-rank(input), rank(input))`. If
3849
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3850
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3851 3852
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3853
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3854
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3855
                       will be named automatically.
G
guosheng 已提交
3856 3857

    Returns:
Y
Yibing Liu 已提交
3858
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3859

G
guosheng 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3870 3871
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3872 3873 3874 3875 3876 3877 3878

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3879 3880
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3881
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3882 3883
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3884 3885 3886 3887 3888
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3889
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3890 3891 3892 3893
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3894 3895


C
caoying03 已提交
3896
def reduce_max(input, dim=None, keep_dim=False, name=None):
3897
    """
Y
yangyaming 已提交
3898
    Computes the maximum of tensor elements over the given dimension.
3899 3900 3901

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3902
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3903 3904 3905
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3906
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3907 3908
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3909
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3910 3911
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3912 3913 3914

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3915

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3927 3928 3929 3930 3931 3932 3933

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3934 3935
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3936
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3937 3938
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3939 3940 3941 3942 3943
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3944
            'dim': dim if dim != None else [0],
3945 3946 3947 3948 3949 3950
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3951
def reduce_min(input, dim=None, keep_dim=False, name=None):
3952
    """
Y
yangyaming 已提交
3953
    Computes the minimum of tensor elements over the given dimension.
3954 3955 3956

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3957
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3958 3959 3960
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3961
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3962 3963
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3964
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3965 3966
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3967 3968 3969

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3970

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3982 3983 3984 3985 3986 3987 3988

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3989 3990
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3991
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3992 3993
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3994 3995 3996 3997 3998
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3999
            'dim': dim if dim != None else [0],
4000 4001 4002 4003
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4004 4005


4006 4007 4008 4009 4010 4011
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4012
        dim (list|int|None): The dimensions along which the product is performed. If
4013 4014
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4015 4016
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4017 4018 4019
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4020
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4021
            layer will be named automatically.
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4036
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4037
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4038 4039 4040 4041 4042 4043 4044

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4045 4046
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4047
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4048 4049
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4050 4051 4052 4053 4054
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4055
            'dim': dim if dim != None else [0],
4056 4057 4058 4059 4060 4061
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4062
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4063
    """
C
caoying03 已提交
4064
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4065 4066 4067

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4068 4069 4070 4071 4072
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4073
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4074
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4075
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4076 4077
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4078 4079

    Returns:
D
dzhwinter 已提交
4080
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4090 4091
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4107
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4130
    .. math::
4131 4132

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4133 4134 4135 4136 4137

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4138
        x(Variable|list): The input tensor to l2_normalize layer.
4139
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4140 4141
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4142
        epsilon(float): The epsilon value is used to avoid division by zero, \
4143
            the defalut value is 1e-10.
4144
        name(str|None): A name for this layer(optional). If set None, the layer \
4145
            will be named automatically.
C
caoying03 已提交
4146 4147

    Returns:
4148
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4149 4150

    Examples:
4151

C
caoying03 已提交
4152 4153
        .. code-block:: python

4154 4155 4156 4157
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4158 4159
    """

F
fengjiayi 已提交
4160 4161
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4162 4163
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4164 4165
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4166
    helper.append_op(
4167 4168 4169 4170
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4171
        attrs={
4172 4173
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4174 4175
        })
    return out
4176 4177


S
sneaxiy 已提交
4178
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4179
    """
Y
ying 已提交
4180 4181 4182 4183
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4184

C
chengduoZH 已提交
4185
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4186
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4187

4188 4189 4190 4191 4192
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4193
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4194

C
chengduoZH 已提交
4195
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4196
      performs in the following way.
G
guosheng 已提交
4197

4198
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4199
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4200
        last two dimensions and a batched matrix multiply supporting broadcast
4201
        applies on the two tensors.
G
guosheng 已提交
4202

Y
ying 已提交
4203 4204
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4205
    removed after matrix multiplication.
G
guosheng 已提交
4206 4207 4208

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4209 4210 4211
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4212
        alpha (float): The scale of output. Default 1.0.
4213
        name(str|None): A name for this layer(optional). If set None, the layer
4214
            will be named automatically.
G
guosheng 已提交
4215 4216

    Returns:
4217
        Variable: The product Tensor variable.
G
guosheng 已提交
4218

G
guosheng 已提交
4219 4220 4221
    Examples:
        .. code-block:: python

4222
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4223 4224
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4225

4226 4227
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4228

4229 4230
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4231

4232 4233
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4234 4235 4236 4237

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4238 4239
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4240

Y
ying 已提交
4241
            # x: [M], y: [N]
4242
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4243
    """
Y
ying 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4256
            y_shape = y_shape + [1]
Y
ying 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4273
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4274
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4275
    helper.append_op(
4276 4277 4278 4279
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4280 4281 4282
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4283
            'alpha': float(alpha),
S
sneaxiy 已提交
4284
        })
4285
    return out
4286 4287


4288
def topk(input, k, name=None):
Q
qingqing01 已提交
4289 4290 4291 4292
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4293
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4294 4295 4296 4297 4298 4299
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4321 4322 4323
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4324
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4325
                 of input.
4326
        name(str|None): A name for this layer(optional). If set None, the layer
4327
                       will be named automatically.
F
fengjiayi 已提交
4328
                       Default: None
Q
qingqing01 已提交
4329 4330

    Returns:
4331 4332 4333
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4334
        within the last dimension of input.
Q
qingqing01 已提交
4335

F
fengjiayi 已提交
4336 4337
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4338 4339 4340 4341 4342 4343 4344

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4345 4346
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4358
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4359
    """
Y
ying 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4369

Y
ying 已提交
4370
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4371

4372
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4373 4374
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4375
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4376

4377
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4378 4379
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4380

4381 4382 4383
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4384
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4385
                          the length of reference string.
4386
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4387
                                     calculating edit distance.
4388
        name (str): The name of this layer. It is optional.
4389

W
wanghaoshuang 已提交
4390
    Returns:
W
wanghaoshuang 已提交
4391
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4392 4393 4394 4395

    Examples:
        .. code-block:: python

T
tink2123 已提交
4396 4397
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4398
            cost = fluid.layers.edit_distance(input=x,label=y)
4399
    """
4400
    helper = LayerHelper("edit_distance", **locals())
4401

4402
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4403
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4404 4405
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4406 4407 4408 4409 4410

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4411
            attrs={"tokens": ignored_tokens})
4412 4413 4414 4415 4416
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4417
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4418
            attrs={"tokens": ignored_tokens})
4419 4420
        label = erased_label

4421
    # edit distance op
X
Xin Pan 已提交
4422 4423
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4424 4425 4426 4427
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4428 4429
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4430 4431
        attrs={"normalized": normalized})

4432
    return edit_distance_out, sequence_num
4433 4434 4435 4436 4437


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4438

Y
ying 已提交
4439 4440 4441 4442
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4460
        input.lod = [[4, 4]]
W
whs 已提交
4461 4462
      
        Computation:
4463

W
whs 已提交
4464 4465 4466 4467 4468 4469
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4470 4471 4472 4473 4474

        output.data = [[2],
                       [1],
                       [3]]

4475
        output.lod = [[2, 1]]
4476

W
whs 已提交
4477

4478 4479
    Args:

Y
ying 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4489
        name (str): The name of this layer. It is optional.
4490 4491

    Returns:
W
whs 已提交
4492 4493 4494 4495
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4496 4497 4498 4499 4500

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4501

4502
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4503
    """
4504
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4505
    _, topk_indices = topk(input, k=1)
4506 4507

    # ctc align op
X
Xin Pan 已提交
4508
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4509 4510 4511
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4512
        outputs={"Output": [ctc_out]},
4513 4514
        attrs={"merge_repeated": True,
               "blank": blank})
4515
    return ctc_out
4516 4517


W
Wu Yi 已提交
4518
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4519
    """
4520 4521
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4522
    to compute Connectionist Temporal Classification (CTC) loss.
4523 4524
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4525 4526 4527
    input tensor.

    Args:
4528
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4529 4530 4531 4532
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4533
       label (Variable): The ground truth of variable-length sequence,
4534 4535 4536
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4537 4538
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4539 4540 4541
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4542
         follewed by a mean_op.
W
Wu Yi 已提交
4543
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4544 4545

    Returns:
4546 4547
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4548 4549

    Examples:
4550

W
wanghaoshuang 已提交
4551
        .. code-block:: python
4552

4553 4554 4555
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4556 4557

    """
F
fengjiayi 已提交
4558
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4559 4560
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4561 4562 4563 4564 4565 4566
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4567 4568 4569 4570 4571
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4572
    return loss_out
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4588 4589 4590
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4591 4592 4593 4594 4595
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4596

4597
            out.lod  = [[0, 1, 3]]
4598 4599 4600 4601

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4602 4603 4604 4605 4606 4607 4608
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4609 4610 4611

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4612 4613

    Returns:
4614

4615 4616 4617 4618 4619
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4620
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4621
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4622 4623
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4624
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4625 4626 4627 4628 4629 4630
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4631 4632


4633 4634 4635 4636
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4637 4638 4639 4640 4641 4642
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4643
        num_neg_samples=None,
4644 4645 4646
        name=None,
        sampler="uniform",
        custom_dist=None,
4647 4648
        seed=0,
        is_sparse=False):
4649 4650 4651 4652 4653 4654 4655
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4656 4657
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4658
            sample is 1.0.
C
chengduo 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4668
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4669 4670
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4671 4672 4673
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4674
        custom_dist (float[]): A float[] with size=num_total_classes.
4675 4676 4677 4678
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4679
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4680

4681
    Returns:
Y
Yibing Liu 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4709 4710 4711 4712 4713 4714 4715 4716 4717

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4718

4719
    """
Y
Yang Yu 已提交
4720 4721 4722
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4723 4724

    dim = input.shape[1]
Y
Yang Yu 已提交
4725 4726 4727 4728 4729 4730
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4731
    inputs = {}
C
chengduo 已提交
4732 4733 4734 4735 4736 4737 4738
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4739 4740 4741
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4742

4743 4744 4745 4746
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4747 4748 4749 4750 4751 4752 4753

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4806 4807 4808 4809
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4810 4811 4812 4813 4814
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4815 4816
    attrs = {
        'num_total_classes': int(num_total_classes),
4817 4818
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4819 4820
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4821
    }
Y
Yang Yu 已提交
4822 4823 4824

    helper.append_op(
        type='nce',
C
chengduo 已提交
4825
        inputs=inputs,
Y
Yang Yu 已提交
4826 4827 4828 4829 4830 4831
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4832
    return cost / (num_neg_samples + 1)
4833 4834


C
chengduo 已提交
4835 4836
def hsigmoid(input,
             label,
4837
             num_classes,
C
chengduo 已提交
4838 4839
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4840
             name=None,
4841 4842 4843
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4844
             is_sparse=False):
W
weixing02 已提交
4845 4846
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4847
    process of language model. This operator organizes the classes into a
4848 4849
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4850 4851 4852 4853 4854 4855
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4856
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4857
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4858

4859 4860 4861 4862 4863 4864 4865 4866 4867
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4868
    Args:
M
minqiyang 已提交
4869
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4870 4871 4872 4873
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4874 4875 4876
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4888 4889 4890 4891 4892 4893 4894
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4895
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4896 4897
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4898 4899

    Returns:
J
JiabinYang 已提交
4900
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4901 4902 4903 4904 4905

    Examples:

        .. code-block:: python

G
guosheng 已提交
4906 4907 4908
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4909 4910 4911 4912
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4913 4914
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4915
    dim = input.shape[1]
4916
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4917 4918 4919
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4920 4921 4922 4923
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4924 4925
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4926 4927 4928
    else:
        pass

J
JiabinYang 已提交
4929 4930
    weights = None

4931
    if not is_custom:
J
JiabinYang 已提交
4932 4933 4934 4935 4936 4937 4938 4939
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4940
            shape=[num_classes, dim],
J
JiabinYang 已提交
4941 4942
            is_bias=False,
            dtype=input.dtype)
4943 4944 4945
    inputs = {
        "X": input,
        "W": weights,
4946 4947
        "PTable": path_table,
        "PathCode": path_code,
4948 4949
        "Label": label
    }
W
weixing02 已提交
4950
    if helper.bias_attr:
4951
        if not is_custom:
J
JiabinYang 已提交
4952 4953
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4954
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4955 4956 4957 4958 4959 4960
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4961
                shape=[num_classes, 1],
J
JiabinYang 已提交
4962 4963 4964
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4965 4966
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4967
        inputs=inputs,
W
weixing02 已提交
4968 4969
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4970 4971
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4972 4973 4974
    return out


Y
fix ci.  
ying 已提交
4975
def transpose(x, perm, name=None):
Y
ying 已提交
4976 4977 4978 4979 4980 4981 4982
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4983 4984 4985
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4986 4987 4988 4989 4990 4991 4992

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4993
            # use append_batch_size=False to avoid prepending extra
4994
            # batch size in shape
4995
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4996
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4997
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4998 4999
    """

Y
fix ci.  
ying 已提交
5000
    if len(perm) != len(x.shape):
Y
ying 已提交
5001 5002 5003
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5004 5005 5006 5007 5008 5009
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5010 5011

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5012 5013
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5014
    helper.append_op(
5015
        type='transpose2',
Y
fix ci.  
ying 已提交
5016
        inputs={'X': [x]},
5017 5018
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5019 5020
        attrs={'axis': perm})
    return out
5021 5022


5023 5024 5025 5026 5027 5028 5029
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5030
    """
5031 5032 5033 5034 5035 5036 5037
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5066 5067 5068 5069 5070 5071 5072 5073 5074
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5075 5076 5077
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5078 5079 5080 5081 5082
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5110 5111 5112
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5125
            output.dims = {8, 8}
5126

5127
            output.lod = [[4, 4]]
5128

T
Tink_Y 已提交
5129
    Examples:
5130 5131 5132

        .. code-block:: python

5133 5134
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5135 5136

    """
W
wanghaoshuang 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5147 5148 5149 5150 5151 5152 5153
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5154
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5155
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5156
    helper.append_op(
5157
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5158
    return out
5159 5160


Y
yuyang18 已提交
5161
@templatedoc()
5162
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5163 5164
    """
    ${comment}
5165 5166

    Args:
Y
yuyang18 已提交
5167
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5168 5169
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5170 5171 5172 5173 5174
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5175
        ${out_comment}.
5176 5177

    Examples:
Y
yuyang18 已提交
5178 5179 5180 5181
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5182 5183 5184 5185 5186 5187
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5188
    out = helper.create_variable_for_type_inference(dtype)
5189 5190 5191 5192 5193
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5194
    return helper.append_activation(out)
5195 5196


Y
yuyang18 已提交
5197
@templatedoc()
5198 5199
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5200 5201 5202 5203 5204 5205 5206
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5207 5208

    Args:
Y
yuyang18 已提交
5209 5210
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5211 5212

    Returns:
Y
yuyang18 已提交
5213
        ${out_comment}.
5214 5215
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5216 5217 5218 5219 5220

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5221
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5222 5223 5224 5225 5226 5227
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5228 5229


5230 5231 5232
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5233
                               ignore_index=kIgnoreIndex,
5234 5235
                               numeric_stable_mode=False,
                               return_softmax=False):
5236 5237
    """
    **Softmax With Cross Entropy Operator.**
5238

5239 5240 5241 5242
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5243

5244 5245 5246
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5247

5248 5249 5250
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5251

5252
    The equation is as follows:
5253

5254
    1) Hard label (one-hot label, so every sample has exactly one class)
5255

5256 5257 5258 5259
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5260

5261 5262 5263
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5264

5265 5266 5267 5268
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5269 5270 5271
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5272

S
sneaxiy 已提交
5273 5274 5275 5276 5277 5278 5279 5280
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5281 5282 5283 5284 5285 5286 5287 5288
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5289 5290
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5291
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5292 5293 5294
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5295 5296 5297
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5298
                                    stable algorithm. Default: False
5299
        return_softmax (bool): A flag indicating whether to return the softmax
5300
                               along with the cross entropy loss. Default: False
5301

5302
    Returns:
5303 5304 5305 5306
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5307
                              2-D tensor with shape [N x K].
5308 5309 5310 5311 5312 5313 5314

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5315 5316
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5317 5318
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5319 5320
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5321 5322 5323 5324 5325 5326
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5327 5328 5329 5330 5331
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5332 5333 5334 5335

    if return_softmax:
        return loss, softmax

5336 5337 5338 5339 5340
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5341 5342
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5343
    For each instance, it computes the smooth L1 loss element by element first
5344
    and then sums all the losses. So the shape of ouput Variable is
5345
    [batch_size, 1].
5346

5347 5348
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5349
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5350
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5351
            L1 loss op with same shape as :attr:`x`.
5352
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5353 5354
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5355
            by this tensor element by element.
5356
        outside_weight (Variable|None): A tensor with rank at least 2. This
5357 5358
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5359
            element by element.
5360
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5361 5362
           scalar with default value 1.0.

5363
    Returns:
5364
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5365 5366 5367 5368 5369

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5370 5371
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5372
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5373
            out = fluid.layers.smooth_l1(x=fc, y=label)
5374
    """
5375

5376
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5377 5378
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5391 5392 5393 5394


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5395
    This layer creates the one-hot representations for input indices.
5396 5397

    Args:
Y
Yibing Liu 已提交
5398 5399
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5400 5401

    Returns:
Y
Yibing Liu 已提交
5402
        Variable: The one-hot representations of input.
5403 5404

    Examples:
C
caoying03 已提交
5405
        .. code-block:: python
5406

Y
Yibing Liu 已提交
5407 5408
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5409 5410
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5411
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5412 5413 5414 5415 5416 5417
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5418 5419


Y
Yu Yang 已提交
5420
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5421
    """
Y
yi.wu 已提交
5422 5423 5424
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5425 5426 5427 5428 5429 5430

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5431 5432
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5433 5434 5435 5436 5437 5438

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5439 5440
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5441 5442
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5443 5444 5445 5446 5447
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5448
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5449
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5450 5451
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5452 5453
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5454 5455 5456
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5457 5458


5459
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5460
    """
C
caoying03 已提交
5461 5462
    Gives a new shape to the input Tensor without changing its data.

5463 5464 5465 5466 5467
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5468

5469
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5470

5471 5472 5473 5474
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5475
    2. 0 means the actual dimension value is going to be copied from the
5476 5477 5478 5479
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5480 5481

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5482
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5483
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5484

5485
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5486 5487
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5488 5489
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5490
    dimensions.
C
caoying03 已提交
5491

5492
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5493 5494 5495 5496
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5497 5498

    Args:
5499
        x(variable): The input tensor.
C
caoying03 已提交
5500 5501
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5502 5503 5504 5505 5506
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5507 5508
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5509 5510 5511 5512 5513 5514 5515
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5516
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5517

5518
    Returns:
G
guosheng 已提交
5519 5520 5521 5522
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5523

X
Xin Pan 已提交
5524 5525 5526
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5527 5528
    Examples:
        .. code-block:: python
G
guosheng 已提交
5529

5530
            data = fluid.layers.data(
5531
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5532
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5533
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5534 5535 5536
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5537
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5538 5539 5540 5541 5542
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5559
    helper = LayerHelper("reshape2", **locals())
5560 5561
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5562
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5563
    helper.append_op(
5564
        type="reshape2",
X
Xin Pan 已提交
5565
        inputs=inputs,
D
dzhwinter 已提交
5566
        attrs={"shape": shape},
5567 5568
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5569

D
dzhwinter 已提交
5570
    return helper.append_activation(out)
5571

5572

5573
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5574
    """
M
minqiyang 已提交
5575 5576 5577
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5578
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5579

Y
Yibing Liu 已提交
5580 5581
    Examples:
    Case 1:
M
minqiyang 已提交
5582
      Given
Y
Yibing Liu 已提交
5583 5584 5585 5586 5587 5588 5589 5590
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5591
        and
Y
Yibing Liu 已提交
5592 5593 5594
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5595

Y
Yibing Liu 已提交
5596
    Args:
5597
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5598
        axes (list): List of integers, indicating the dimensions to be squeezed.
5599
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5600 5601 5602 5603 5604 5605 5606 5607

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5608
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5609 5610
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5611 5612
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5613
    helper.append_op(
5614
        type="squeeze2",
5615
        inputs={"X": input},
Y
Yibing Liu 已提交
5616
        attrs={"axes": axes},
5617 5618
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5619

5620 5621 5622
    return out


5623
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5624
    """
M
minqiyang 已提交
5625 5626 5627
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5628

M
minqiyang 已提交
5629 5630
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5631
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5632

Y
Yibing Liu 已提交
5633
    Args:
5634
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5635
        axes (list): List of integers, indicating the dimensions to be inserted.
5636
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5637 5638 5639 5640 5641 5642 5643 5644

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5645
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5646 5647
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5648 5649
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5650
    helper.append_op(
5651
        type="unsqueeze2",
5652
        inputs={"X": input},
Y
Yibing Liu 已提交
5653
        attrs={"axes": axes},
5654 5655
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5656

5657 5658
    return out

5659

Y
yangyaming 已提交
5660
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5661
    """
Y
Yibing Liu 已提交
5662
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5663 5664 5665 5666
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5667
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5668 5669 5670 5671 5672 5673

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5674
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5675 5676 5677
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5678
            target_lod: [4, 2]
Y
yangyaming 已提交
5679 5680

            then we get a 1-level LoDTensor:
5681
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5682 5683 5684 5685 5686 5687
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5688
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5689 5690 5691 5692
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5693
                y.data = [[2, 4]]
Y
yangyaming 已提交
5694 5695 5696
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5697
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5698 5699 5700 5701 5702 5703
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5704
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5705 5706 5707 5708
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5709
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5710 5711 5712 5713
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5714
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5715 5716 5717 5718 5719
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5720
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5721
                           from :attr:`y`.
Y
yangyaming 已提交
5722
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5723
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5724 5725

    Returns:
Y
Yibing Liu 已提交
5726
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5727 5728

    Raises:
Y
Yibing Liu 已提交
5729
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5730 5731 5732 5733 5734 5735 5736 5737 5738

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5739
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5765
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5794 5795
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5808 5809 5810
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5824 5825 5826 5827


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5828
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5829
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5830

G
guosheng 已提交
5831 5832 5833 5834
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5857
                         The length of :attr:paddings must be
G
guosheng 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5868

G
guosheng 已提交
5869 5870 5871 5872 5873 5874
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5875
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5876 5877 5878 5879 5880 5881 5882
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5883 5884


C
chengduo 已提交
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5916 5917
		And
            pad_value = -1,
C
chengduo 已提交
5918

T
Tink_Y 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5954
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5964 5965 5966 5967 5968 5969 5970
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5971 5972
    called label-smoothing regularization (LSR).

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5996
                              be :math:`(1, class\_num)`.
5997 5998
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5999
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6019
    smooth_label = helper.create_variable_for_type_inference(dtype)
6020 6021 6022 6023 6024 6025 6026
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6027 6028


W
wopeizl 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6065 6066


J
jerrywgz 已提交
6067 6068 6069 6070 6071 6072
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6073 6074
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6091 6092 6093
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6094 6095 6096 6097 6098 6099
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6100
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6141 6142
        .. code-block:: python

W
whs 已提交
6143 6144 6145 6146
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6147
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6148 6149 6150 6151 6152 6153
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6154 6155


6156 6157 6158 6159
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6160 6161
                 resample='BILINEAR',
                 actual_shape=None):
6162
    """
Q
qiaolongfei 已提交
6163
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6164

6165
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6166 6167 6168
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6169

6170
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6171

6172
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6173

6174
    Args:
6175
        input (Variable): The input tensor of image resize layer,
6176 6177
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6178
        out_shape(list|tuple|Variable|None): Output shape of image resize
6179 6180
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6181
        scale(float|None): The multiplier for the input height or width.
6182 6183 6184
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6185 6186
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6187
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6188
                       currently.
6189
                       Default: 'BILINEAR'
6190 6191 6192
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6193
                                :attr:`out_shape` and :attr:`scale` specifying
6194 6195 6196 6197 6198 6199 6200
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6201 6202
                                constructing stage.
                                Default: None
6203 6204

    Returns:
Q
update  
qiaolongfei 已提交
6205 6206
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6207

6208 6209 6210
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6211
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6212 6213 6214 6215
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6216 6217 6218
    Examples:
        .. code-block:: python

6219
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6220
    """
6221 6222 6223 6224
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6225 6226
    if resample not in resample_methods:
        raise ValueError(
6227
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6228
        )
6229
    resample_type = resample_methods[resample]
6230
    if out_shape is None and scale is None:
6231
        raise ValueError("One of out_shape and scale must not be None.")
6232
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6233
    dtype = helper.input_dtype()
6234 6235 6236 6237

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6238 6239 6240
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6241
    if out_shape is not None:
6242 6243 6244 6245
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6246
            inputs['OutSize'] = out_shape
6247 6248 6249 6250 6251 6252 6253 6254
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6255 6256 6257 6258
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6259 6260 6261 6262 6263
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6264
    out = helper.create_variable_for_type_inference(dtype)
6265
    helper.append_op(
6266
        type='{}_interp'.format(resample_type),
6267
        inputs=inputs,
6268
        outputs={"Out": out},
6269 6270 6271
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6272
    return out
F
stash  
fengjiayi 已提交
6273 6274


6275
@templatedoc(op_type="bilinear_interp")
6276 6277 6278 6279 6280
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6281
    """
6282 6283
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6284 6285
    in priority order.

6286 6287 6288 6289
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6290 6291
    again in the other direction.

6292
    For details of bilinear interpolation, please refer to Wikipedia:
6293
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6294 6295 6296 6297 6298

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6299

Y
yuyang18 已提交
6300 6301 6302 6303 6304
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6305 6306 6307
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6308
                                :attr:`out_shape` and :attr:`scale` specifying
6309 6310 6311 6312 6313 6314 6315
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6316 6317
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6318 6319 6320

    Returns:
        ${out_comment}.
6321 6322 6323 6324 6325

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6326 6327
    """

6328
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6329 6330


6331
@templatedoc(op_type="nearest_interp")
6332 6333 6334 6335 6336
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6337
    """
6338
    Resize input by performing nearest neighbor interpolation in both the
6339 6340
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6341 6342
    out_shape and scale in priority order.

6343
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6344
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6345 6346 6347 6348 6349

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6350

Y
yuyang18 已提交
6351 6352 6353 6354 6355
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6356 6357 6358
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6359
                                :attr:`out_shape` and :attr:`scale` specifying
6360 6361 6362 6363 6364 6365 6366
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6367 6368
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6369 6370 6371

    Returns:
        ${out_comment}.
6372 6373 6374 6375 6376

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6377 6378
    """

6379
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6380 6381 6382 6383


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6384 6385 6386
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6387 6388 6389 6390 6391 6392 6393
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6394
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6395

6396
    Returns:
Q
update  
qiaolongfei 已提交
6397
        Variable: The output is a 4-D tensor of the shape
6398
        (num_batches, channls, out_h, out_w).
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6409 6410 6411
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6412 6413 6414
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6415 6416
def gather(input, index):
    """
Q
qiaolongfei 已提交
6417 6418
    **Gather Layer**

6419
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6420 6421 6422 6423
    of X indexed by `index` and concatenate them together.

    .. math::

6424
        Out = X[Index]
W
whs 已提交
6425 6426 6427 6428 6429 6430 6431


    .. code-block:: text


                Given:

6432 6433
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6444
        input (Variable): The source input with rank>=1.
W
whs 已提交
6445 6446 6447 6448 6449 6450
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6451

W
whs 已提交
6452 6453 6454 6455 6456 6457
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6458
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6459 6460 6461 6462 6463 6464 6465 6466
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6498
    out = helper.create_variable_for_type_inference(dtype)
6499 6500 6501 6502 6503 6504 6505 6506 6507
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6558
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6581

6582 6583 6584
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6585
    """
F
stash  
fengjiayi 已提交
6586
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6587
    dtype = x.dtype
X
Xin Pan 已提交
6588
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6589
    if seed is None:
6590
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6591
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6592
    if isinstance(seed, int):
F
fengjiayi 已提交
6593 6594 6595 6596 6597
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6598 6599 6600 6601
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6602
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6603 6604
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6605 6606
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6607
    return out
W
whs 已提交
6608 6609


6610
def log(x, name=None):
W
wanghaoshuang 已提交
6611 6612 6613 6614 6615
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6616
        Out = \\ln(x)
W
wanghaoshuang 已提交
6617 6618

    Args:
6619
        x (Variable): Input tensor.
6620 6621
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6622 6623 6624 6625 6626 6627 6628 6629

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6630
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6631 6632
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6633
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6634
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6635
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6636 6637 6638
    return out


6639
def relu(x, name=None):
W
wanghaoshuang 已提交
6640 6641
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6642
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6643 6644 6645 6646
    the tensor elementwise.

    .. math::

6647
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6648 6649

    Args:
6650
        x (Variable): The input tensor.
6651 6652
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6653 6654 6655 6656 6657 6658 6659 6660

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6661
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6662 6663
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6664
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6665
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6666 6667
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6668
    return out
6669 6670


C
chengduo 已提交
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6712 6713 6714
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6715 6716 6717 6718
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6719
    .. math::
6720 6721

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6722

6723
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6724 6725 6726 6727 6728
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6729
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6730
                           Its shape should be the same as input.
6731
        num_classes (int): The possible number of labels.
W
whs 已提交
6732 6733 6734 6735

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6736
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6737 6738 6739 6740

    Examples:

        .. code-block:: python
6741

W
whs 已提交
6742 6743 6744 6745
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6746 6747 6748
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6749 6750
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6751 6752
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6753
        outputs={
W
whs 已提交
6754 6755 6756
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6757 6758 6759
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6828
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6829 6830 6831 6832 6833

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6834
            isinstance(shape, Variable)):
6835 6836 6837 6838 6839
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6840
    out = helper.create_variable_for_type_inference(x.dtype)
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6858 6859


W
whs 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6877

W
whs 已提交
6878
              out_shape = [2, 3, 5, 5]
6879

W
whs 已提交
6880
          Step 1:
6881

W
whs 已提交
6882 6883 6884
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6885

W
whs 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6956
            isinstance(out_shape, Variable)):
W
whs 已提交
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6978 6979 6980 6981 6982 6983 6984 6985
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6986

6987 6988
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6989

6990 6991 6992 6993
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6994

6995 6996 6997 6998 6999
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7000 7001 7002

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7038
    out = helper.create_variable_for_type_inference("float32")
7039 7040 7041 7042 7043 7044 7045 7046

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7047 7048


M
minqiyang 已提交
7049 7050
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7051
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7052
    which compares left score and right score passed in.
M
minqiyang 已提交
7053
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7054 7055 7056 7057 7058 7059

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7060
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7061 7062
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7063
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7064 7065 7066
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7067
       Variable: The ranking loss.
M
minqiyang 已提交
7068
    Raises:
M
minqiyang 已提交
7069
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7070 7071 7072 7073 7074 7075 7076
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7077
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7078 7079 7080 7081 7082 7083
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7084 7085
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7109
        .. code-block:: text
W
whs 已提交
7110

T
Tink_Y 已提交
7111
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7112

T
Tink_Y 已提交
7113 7114
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7115

T
Tink_Y 已提交
7116
	      Case 0:
M
minqiyang 已提交
7117

T
Tink_Y 已提交
7118 7119 7120
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7121

T
Tink_Y 已提交
7122 7123 7124
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7125

T
Tink_Y 已提交
7126
	      Case 1:
M
minqiyang 已提交
7127

T
Tink_Y 已提交
7128 7129
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7130

T
Tink_Y 已提交
7131 7132 7133
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7134

T
Tink_Y 已提交
7135
	      Case 2:
M
minqiyang 已提交
7136

T
Tink_Y 已提交
7137 7138
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7139

T
Tink_Y 已提交
7140 7141 7142
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7143 7144


W
whs 已提交
7145 7146
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7147
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7171
    out = helper.create_variable_for_type_inference(dtype)
7172 7173 7174 7175 7176 7177 7178 7179 7180
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7181
    helper.append_op(
7182
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7183 7184 7185 7186

    return out


7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7199 7200 7201 7202 7203

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7204 7205
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7206 7207
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7208
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7229 7230 7231 7232 7233

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7234 7235
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7236 7237
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7238
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7259 7260 7261 7262 7263

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7264 7265
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7266 7267
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7268
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7290 7291 7292 7293 7294

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7295
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7296
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7297 7298
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7299
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7322 7323 7324 7325 7326

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7327 7328
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7329 7330
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7331
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7353 7354 7355 7356 7357

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7358 7359
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7360 7361
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7362
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7363 7364 7365 7366 7367 7368 7369 7370
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7371 7372 7373 7374
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7375
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7376 7377 7378

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7379
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7380
          weight (alpha).
J
jerrywgz 已提交
7381
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7382 7383 7384
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7385
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7386
          will be named automatically.
J
jerrywgz 已提交
7387 7388 7389 7390 7391 7392 7393 7394

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7395
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7409
        attr=helper.param_attr,
J
jerrywgz 已提交
7410 7411 7412 7413
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7414
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7415 7416 7417 7418 7419 7420 7421 7422 7423
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7434
    Returns:
7435
        output(${out_type}): ${out_comment}
7436 7437 7438 7439 7440 7441 7442

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7443 7444
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7445
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7464
    Returns:
7465
        output(${out_type}): ${out_comment}
7466 7467 7468 7469 7470 7471 7472

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7473 7474
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7475
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7493
    Returns:
7494
        output(${out_type}): ${out_comment}
7495 7496 7497 7498 7499 7500 7501

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7502 7503
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7504
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7505 7506 7507 7508 7509 7510 7511 7512
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7526

7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7537 7538
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7554
        ValueError: If axis is not in range [0, rank(x)].
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7571 7572
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7573
    helper.append_op(
7574
        type='flatten2',
7575
        inputs={"X": x},
7576 7577
        outputs={'Out': out,
                 'XShape': x_shape},
7578 7579
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7580 7581


C
chenweihang 已提交
7582
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7583
    """
C
chenweihang 已提交
7584
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7585
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7586 7587
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7588

C
chenweihang 已提交
7589 7590 7591 7592
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7593
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7594 7595 7596 7597 7598 7599
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7600
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7601 7602 7603
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7604 7605 7606
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7618 7619
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7620 7621 7622 7623 7624 7625
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7626
    return out
7627

7628

S
sneaxiy 已提交
7629 7630 7631 7632 7633 7634 7635 7636 7637
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7638

S
sneaxiy 已提交
7639
    .. math::
7640

S
sneaxiy 已提交
7641 7642 7643
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7644
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7645 7646 7647 7648
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7649 7650 7651
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7652 7653
    Returns:
        Variable: The output sequence mask.
7654

S
sneaxiy 已提交
7655 7656
    """

Q
qingqing01 已提交
7657
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7658
    if name is None:
X
Xin Pan 已提交
7659
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7660
    else:
X
Xin Pan 已提交
7661
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7662

Q
qingqing01 已提交
7663 7664 7665
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7666 7667
        outputs={'Y': out},
        attrs={
7668
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7669 7670 7671
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7672 7673


X
Xin Pan 已提交
7674
def stack(x, axis=0):
S
sneaxiy 已提交
7675 7676 7677 7678
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7679 7680 7681 7682 7683 7684 7685

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7686
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7687
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7688 7689

    Args:
7690
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7691
        axis (int|None): The axis along which all inputs are stacked.
7692

S
sneaxiy 已提交
7693 7694
    Returns:
        Variable: The stacked variable.
7695

S
sneaxiy 已提交
7696 7697
    """

X
Xin Pan 已提交
7698 7699 7700 7701 7702 7703
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7704
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7705
    helper.append_op(
S
sneaxiy 已提交
7706 7707
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7708

X
Xin Pan 已提交
7709
    return out
D
dzhwinter 已提交
7710 7711 7712 7713 7714 7715 7716


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7717

D
dzhwinter 已提交
7718 7719 7720
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7721
    raised.
D
dzhwinter 已提交
7722 7723

    Args:
M
minqiyang 已提交
7724
        x (Variable): Input variable.
D
dzhwinter 已提交
7725 7726
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7727

D
dzhwinter 已提交
7728 7729
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7730

D
dzhwinter 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7742
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7743 7744 7745 7746 7747 7748 7749 7750

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7763

W
whs 已提交
7764 7765 7766 7767
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7768

W
whs 已提交
7769
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7770

W
whs 已提交
7771
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7772

W
whs 已提交
7773 7774 7775 7776
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7777

W
whs 已提交
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7794
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7795 7796 7797 7798 7799 7800
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7801 7802


G
fix  
gongweibao 已提交
7803 7804 7805
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7806
@templatedoc()
G
fix  
gongweibao 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7816
    ${comment}
G
fix  
gongweibao 已提交
7817 7818

    Args:
G
gongweibao 已提交
7819 7820 7821
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7822
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7823 7824 7825
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7826 7827
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7828
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7829

7830 7831 7832 7833 7834
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7835 7836 7837
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7838
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7855 7856


G
gongweibao 已提交
7857
@templatedoc()
X
Xin Pan 已提交
7858
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7859
    """
G
gongweibao 已提交
7860
    ${comment}
G
fix  
gongweibao 已提交
7861 7862

    Args:
G
gongweibao 已提交
7863 7864 7865 7866
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7867 7868 7869
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7870
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7871

7872 7873 7874 7875
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7876 7877 7878
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7879
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7890
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7891 7892 7893 7894 7895
        })

    return out


G
gongweibao 已提交
7896
@templatedoc()
G
fix  
gongweibao 已提交
7897
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7898
    """
G
gongweibao 已提交
7899
    ${comment}
G
fix  
gongweibao 已提交
7900 7901

    Args:
G
gongweibao 已提交
7902 7903 7904 7905
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7906
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7907 7908

    Returns:
G
gongweibao 已提交
7909
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7910

7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7921 7922 7923
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7924
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7936
@templatedoc()
G
fix  
gongweibao 已提交
7937 7938 7939 7940 7941 7942 7943 7944 7945
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7946
    ${comment}
G
fix  
gongweibao 已提交
7947 7948

    Args:
G
gongweibao 已提交
7949 7950
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7951
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7952 7953 7954 7955
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7956
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7957 7958

    Returns:
G
gongweibao 已提交
7959
        out (Variable): ${out_comment}
7960 7961 7962 7963 7964 7965 7966 7967

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7968 7969 7970
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7971
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7990
@templatedoc()
X
Xin Pan 已提交
7991
def sum(x):
G
fix  
gongweibao 已提交
7992
    """
G
gongweibao 已提交
7993
    ${comment}
G
fix  
gongweibao 已提交
7994 7995

    Args:
G
gongweibao 已提交
7996
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7997 7998

    Returns:
G
gongweibao 已提交
7999
        out (Variable): ${out_comment}
8000 8001 8002 8003 8004 8005

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8006 8007 8008
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8009 8010
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8011 8012 8013 8014
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8015
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8016 8017 8018 8019

    return out


G
gongweibao 已提交
8020
@templatedoc()
G
fix  
gongweibao 已提交
8021 8022
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8023
    ${comment}
G
fix  
gongweibao 已提交
8024 8025

    Args:
G
gongweibao 已提交
8026 8027 8028 8029
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8030 8031

    Returns:
G
gongweibao 已提交
8032
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8033

8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8045 8046 8047
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8048 8049
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8061
@templatedoc()
G
fix  
gongweibao 已提交
8062 8063
def shape(input):
    """
G
gongweibao 已提交
8064
    ${comment}
G
fix  
gongweibao 已提交
8065 8066

    Args:
G
gongweibao 已提交
8067
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8068 8069

    Returns:
G
gongweibao 已提交
8070
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8071

8072 8073 8074 8075 8076 8077
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8078 8079 8080
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8081 8082
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8083
    helper.append_op(
G
fix  
gongweibao 已提交
8084
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8085 8086

    return out
G
merge  
gongweibao 已提交
8087 8088


S
sneaxiy 已提交
8089 8090 8091 8092 8093 8094 8095 8096
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8097 8098
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8099
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8100 8101 8102
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8103

S
sneaxiy 已提交
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8115
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8116 8117 8118 8119 8120 8121 8122 8123
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8124
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8125
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8126 8127 8128 8129 8130 8131

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8132
    if name is None:
X
Xin Pan 已提交
8133
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8134 8135 8136
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8147
    return helper.append_activation(out)
S
sneaxiy 已提交
8148 8149


X
Xin Pan 已提交
8150
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8151 8152 8153
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8154
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8155 8156 8157
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8158
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8159 8160 8161
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8162
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8163 8164 8165
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8166
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8167 8168 8169
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8170
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8171 8172 8173
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8174
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8186 8187
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8188
        ])
M
minqiyang 已提交
8189 8190


8191
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8192 8193
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8194 8195
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8196 8197 8198

    if out is None:
        if name is None:
X
Xin Pan 已提交
8199
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8215
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8227 8228 8229 8230 8231 8232 8233 8234 8235

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8236 8237 8238 8239 8240 8241 8242
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8243
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8255 8256 8257 8258 8259 8260 8261 8262 8263

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8264 8265 8266 8267 8268 8269 8270
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8271
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8283 8284 8285 8286 8287 8288 8289 8290 8291

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8292 8293 8294 8295 8296 8297 8298
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8299
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8310 8311 8312 8313 8314 8315 8316

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8317 8318 8319 8320
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8336 8337 8338 8339 8340 8341 8342

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8343 8344 8345 8346 8347
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8348 8349 8350 8351
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8375 8376 8377 8378 8379 8380 8381

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8382 8383 8384 8385 8386
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8387 8388 8389 8390
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8391 8392 8393 8394 8395 8396 8397 8398

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8417
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8470
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8471 8472 8473 8474 8475 8476 8477 8478 8479
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8480 8481
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8482 8483 8484 8485 8486 8487
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8488 8489 8490 8491
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8492 8493 8494 8495 8496 8497
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8498
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8508
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8509 8510 8511 8512 8513 8514 8515 8516
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8517
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8538
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8549 8550


J
JiabinYang 已提交
8551
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8552
    """
J
JiabinYang 已提交
8553
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8554 8555 8556

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8557
    The attr blocksize indicates the input block size.
8558 8559

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8560
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8561 8562

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8563
    (but keeping all data)
J
JiabinYang 已提交
8564

J
JiabinYang 已提交
8565
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8566
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8567 8568 8569 8570 8571
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8572
    Args:
J
JiabinYang 已提交
8573
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8574
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8575 8576

    Returns:
J
JiabinYang 已提交
8577
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8578 8579

    Raises:
J
JiabinYang 已提交
8580
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8581 8582 8583 8584 8585 8586

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8587
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8588
                x=data, blocksize=2)
J
JiabinYang 已提交
8589 8590
    """

J
JiabinYang 已提交
8591
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8592

J
JiabinYang 已提交
8593 8594
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8595 8596

    if name is None:
J
JiabinYang 已提交
8597 8598
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8599 8600 8601 8602 8603
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8604
        type="space_to_depth",
J
JiabinYang 已提交
8605
        inputs={"X": x},
J
JiabinYang 已提交
8606
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8607
        outputs={"Out": out})
J
JiabinYang 已提交
8608 8609
    return out

J
JiabinYang 已提交
8610

S
sneaxiy 已提交
8611 8612
@templatedoc()
def sequence_reverse(x, name=None):
8613
    """
S
sneaxiy 已提交
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8625
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8636 8637


8638 8639 8640 8641 8642 8643
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8644

8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8664
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8677 8678


B
barrierye 已提交
8679
def similarity_focus(input, axis, indexes, name=None):
8680
    """
B
barrierye 已提交
8681
    SimilarityFocus Operator
B
barrierye 已提交
8682 8683

    Generate a similarity focus mask with the same shape of input using the following method:
8684 8685 8686
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8687
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8688 8689 8690 8691 8692 8693 8694
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8695
       each index.
B
barrierye 已提交
8696 8697 8698 8699
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8749
    Args:
8750
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8751
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8752
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8753
            1, 2 or 3.
B
barrierye 已提交
8754
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8755 8756

    Returns:
8757
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8758
            as the input.
8759

B
barrierye 已提交
8760 8761 8762
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8763 8764
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8777 8778 8779 8780 8781
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8782 8783 8784 8785 8786 8787 8788
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8789 8790


M
minqiyang 已提交
8791 8792
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8793 8794
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8795 8796
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8835
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8836
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8837 8838 8839 8840 8841 8842 8843 8844 8845

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8846 8847
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8848 8849
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8850 8851 8852 8853 8854 8855 8856
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8857 8858


D
dengkaipeng 已提交
8859
@templatedoc()
8860 8861
def grid_sampler(x, grid, name=None):
    """
8862
    This operation samples input X by using bilinear interpolation based on
8863
    flow field grid, which is usually gennerated by affine_grid. The grid of
8864 8865 8866 8867
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8868
    interpolation value of 4 nearest corner points.
8869 8870 8871 8872 8873 8874 8875 8876

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8877
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8907 8908

    Args:
8909 8910 8911
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8912 8913

    Returns:
8914
        out(Variable): Output of shape [N, C, H, W] data samples input X
8915 8916 8917 8918 8919 8920 8921 8922 8923
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8933
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8934 8935
    ipts = {'X': x, 'Grid': grid}

8936
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8937 8938 8939
    return out


G
gmcather 已提交
8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9034 9035 9036 9037 9038 9039 9040 9041 9042 9043


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9044
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9045

Q
Qiao Longfei 已提交
9046
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9047 9048 9049
    For example:

    .. math::
9050
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9051

Q
Qiao Longfei 已提交
9052
    In this formula:
9053 9054
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9055
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9056
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9057 9058 9059
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9060 9061
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9062 9063 9064
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9065
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9066
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9067
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9068 9069 9070 9071
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9072
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9073 9074 9075 9076

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9077
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9078 9079
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9080
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9081 9082 9083 9084

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9085
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179


@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out