conv_op.h 41.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
liym27 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20
#include <vector>
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
F
Feiyu Chan 已提交
23
#include "paddle/fluid/operators/layout_utils.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
33 34
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
35
constexpr int MaxKeyLength = 256;
36

武毅 已提交
37 38
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
39 40
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
41
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
42
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
L
liym27 已提交
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
45 46 47 48 49 50 51
      platform::errors::InvalidArgument(
          "The output's size is expected to be greater than 0. "
          "But recieved: output's size is %d. The output's size is computed by "
          "((input_size + 2 * padding - (dilation * (filter_size - 1) + 1)) / "
          "stride + 1), where input_size is %d, padding is %d, "
          "filter_size is %d, dilation is %d, stride is %d.",
          output_size, input_size, padding, filter_size, dilation, stride));
C
chengduoZH 已提交
52

武毅 已提交
53 54
  return output_size;
}
L
liym27 已提交
55 56 57 58 59

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding_1, int padding_2, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1;
60 61 62 63 64 65 66 67 68 69
  PADDLE_ENFORCE_GT(
      output_size, 0,
      platform::errors::InvalidArgument(
          "The output's size is expected to be greater than 0. "
          "But recieved: output's size is %d. The output's size is computed by "
          "((input_size + padding_1 + padding_2 - (dilation * (filter_size - "
          "1) + 1)) / stride + 1), where input_size is %d, padding is "
          "(%d, %d), filter_size is %d, dilation is %d, stride is %d.",
          output_size, input_size, padding_1, padding_2, filter_size, dilation,
          stride));
L
liym27 已提交
70 71 72

  return output_size;
}
73 74 75 76

template <typename T = int>
inline void UpdatePaddingAndDilation(std::vector<T>* paddings,
                                     std::vector<T>* dilation,
L
liym27 已提交
77 78
                                     const std::string padding_algorithm,
                                     const framework::DDim data_dims,
79 80
                                     const std::vector<T>& strides,
                                     const std::vector<T>& ksize) {
L
liym27 已提交
81
  // set padding size == data_dims.size() * 2
82
  auto data_shape = framework::vectorize<T>(data_dims);
83 84
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
85
      T copy_pad = *(paddings->begin() + 2 * i);
L
liym27 已提交
86 87 88 89 90
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
91 92 93 94 95 96 97
        platform::errors::InvalidArgument(
            "Attribute padding's size should be the same or twice as the "
            "input's dimension. "
            "But recieved: padding's size is %d, padding is [%s]; input's "
            "dimension is %d, input's shape is [%s].",
            paddings->size(), framework::make_ddim(*paddings), data_dims.size(),
            data_dims));
L
liym27 已提交
98 99
  }

100
  // when padding_algorithm is "VALID" or "SAME"
L
liym27 已提交
101
  if (padding_algorithm == "SAME") {
102
    for (int i = 0; i < data_dims.size(); ++i) {
103 104
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
105 106
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
107 108
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
L
liym27 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;

      // dilation
      *(dilation->begin() + i) = 1;
    }

  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

123 124 125 126
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
127 128
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
129
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
130 131 132
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
133
  }
L
liym27 已提交
134 135 136 137 138
  if (paddings.size() != strides.size()) {
    for (size_t j = 0; j < paddings.size(); ++j) {
      padding_0 = padding_0 && (paddings[j] == 0);
    }
  }
C
chengduoZH 已提交
139
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
140
}
武毅 已提交
141 142 143 144 145

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
146 147 148 149
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
150 151
};

C
chengduoZH 已提交
152 153
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
154 155 156 157 158 159 160 161
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
162
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
Q
qingqing01 已提交
163
      const override {
164
    static std::unordered_map<std::string, std::string> m{
Q
qingqing01 已提交
165
        {"Input", /*->*/ "Output"}};
166
    return m;
Q
qingqing01 已提交
167
  }
C
chengduoZH 已提交
168 169 170
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
171 172
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
173 174 175 176 177 178 179
  void InferShape(framework::InferShapeContext* ctx) const override {
    std::vector<int64_t> output_shape = ComputeOutputShape(ctx);

    OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "Conv");
    ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
    ctx->ShareLoD("Input", "Output");
  }
180 181

 protected:
182 183 184
  std::vector<int64_t> ComputeOutputShape(
      framework::InferShapeContext* ctx) const;

185 186
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
187 188 189 190

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
武毅 已提交
191 192
};

C
chengduoZH 已提交
193
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
194 195 196
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
197

Q
qingqing01 已提交
198 199 200
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
201 202 203 204

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
Q
qingqing01 已提交
205 206 207 208 209 210 211
};

class ConvOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

212 213 214
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
215 216
};

Q
QI JUN 已提交
217
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
218
class GemmConvKernel : public framework::OpKernel<T> {
219 220 221
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
222 223 224 225
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
226 227 228
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
229 230
    const int groups = context.Attr<int>("groups");
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
231
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
232
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto trans_in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(trans_in_dims, 2, trans_in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);
266

267 268
    auto& dev_ctx = context.template device_context<DeviceContext>();

L
liym27 已提交
269
    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
C
chengduoZH 已提交
270

L
liym27 已提交
271 272
    // filter_shape_vec:
    // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
273
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
L
liym27 已提交
274 275 276 277 278

    // output_shape_vec:
    // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_output.dims()));
279

H
hedaoyuan 已提交
280
    // use col_shape in the im2col calculation
L
liym27 已提交
281 282 283
    // col_shape_vec:
    // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w,
    // o_d,o_h, o_w}
C
chengduoZH 已提交
284
    size_t data_dim = filter_shape_vec.size() - 2;
L
liym27 已提交
285

C
chengduoZH 已提交
286
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
287
    col_shape_vec[0] = trans_in_dims[1] / groups;
C
chengduoZH 已提交
288 289 290 291
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
L
liym27 已提交
292

C
chengduoZH 已提交
293 294
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
295
    // use col_matrix_shape in the gemm calculation
L
liym27 已提交
296 297 298 299
    // size:
    // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h *
    // o_w)

C
chengduoZH 已提交
300
    framework::DDim col_matrix_shape =
L
liym27 已提交
301
        framework::flatten_to_2d(col_shape, data_dim);
C
chengduoZH 已提交
302

C
chengduoZH 已提交
303
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
304

H
hedaoyuan 已提交
305
    Tensor col;
H
hedaoyuan 已提交
306 307 308
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
309
    Tensor col_matrix;
C
chengduoZH 已提交
310
    if (is_expand) {
X
Xin Pan 已提交
311
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
312 313 314
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
315

L
liym27 已提交
316 317
    framework::DDim in_matrix_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
318

H
hedaoyuan 已提交
319 320
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
321 322
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
323
    framework::DDim output_matrix_shape = {
L
liym27 已提交
324 325 326
        transformed_output.dims()[1],
        transformed_output.numel() /
            (transformed_output.dims()[0] * transformed_output.dims()[1])};
C
chengduoZH 已提交
327 328

    // convolution operator: im2col(or vol2col) + gemm
L
liym27 已提交
329 330
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output.dims()[1]) / groups;
C
chengduoZH 已提交
331

Q
QI JUN 已提交
332 333
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
334

Y
Yu Yang 已提交
335
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
336
    for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
337 338 339 340
      Tensor in_batch =
          transformed_input.Slice(i, i + 1).Resize(in_matrix_shape);
      Tensor out_batch =
          transformed_output.Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
341

C
chengduoZH 已提交
342 343
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
344

C
chengduoZH 已提交
345
        if (!is_expand) {
C
chengduoZH 已提交
346 347 348
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
349
        } else if (data_dim == 2U) {
Q
QI JUN 已提交
350
          im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
351 352
                 std::vector<int>{paddings[0], paddings[2], paddings[1],
                                  paddings[3]},
C
chengduoZH 已提交
353
                 &col);
L
liym27 已提交
354

C
chengduoZH 已提交
355
        } else if (data_dim == 3U) {
Q
QI JUN 已提交
356
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
357
        }
C
chengduoZH 已提交
358 359 360 361

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
362 363
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
364
      }
365
    }
L
liym27 已提交
366 367 368 369
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
    }
370 371 372
  }
};

Q
QI JUN 已提交
373
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
374
class GemmConvGradKernel : public framework::OpKernel<T> {
375 376
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
377 378 379 380 381
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
382
    Tensor* filter_grad =
H
hedaoyuan 已提交
383
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
384 385 386 387
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
388

C
chengduoZH 已提交
389 390
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
391
    int groups = context.Attr<int>("groups");
L
liym27 已提交
392
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
H
hedaoyuan 已提交
393
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
394
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
395 396 397 398 399 400 401 402
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
H
hedaoyuan 已提交
403

L
liym27 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);
    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
H
hedaoyuan 已提交
430

431 432
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
433
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
434
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
435
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
436
    std::vector<int64_t> output_shape_vec(
L
liym27 已提交
437
        framework::vectorize(transformed_output_grad.dims()));
C
chengduoZH 已提交
438

C
chengduoZH 已提交
439 440 441
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
442 443
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
444
    col_shape_vec[0] = transformed_input.dims()[1] / groups;
C
chengduoZH 已提交
445 446 447 448
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
449
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
450 451

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
452 453 454 455
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
456
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
457

L
liym27 已提交
458 459
    framework::DDim input_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
460

C
chengduoZH 已提交
461 462
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
463 464 465
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
L
liym27 已提交
466 467 468
        transformed_output_grad.dims()[1],
        transformed_output_grad.numel() / (transformed_output_grad.dims()[0] *
                                           transformed_output_grad.dims()[1])};
C
chengduoZH 已提交
469

C
chengduoZH 已提交
470 471
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
L
liym27 已提交
472 473
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output_grad.dims()[1]) / groups;
C
chengduoZH 已提交
474

C
chengduoZH 已提交
475
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
476

C
chengduoZH 已提交
477 478 479 480
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
481
    Tensor col_matrix;
C
chengduoZH 已提交
482
    if (is_expand) {
X
Xin Pan 已提交
483
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
484 485 486
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
487

Q
QI JUN 已提交
488
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
489
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
490 491 492

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
493 494 495 496
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);
C
chengduoZH 已提交
497

L
liym27 已提交
498 499 500
      } else {
        transformed_input_grad = *input_grad;
      }
C
chengduoZH 已提交
501 502 503
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
L
liym27 已提交
504
        set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
C
chengduoZH 已提交
505
      }
Q
QI JUN 已提交
506 507
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
508

C
chengduoZH 已提交
509 510
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
511 512 513
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            transformed_input_grad.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
514 515 516 517 518 519 520 521 522 523
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
524 525
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
526
          }
C
chengduoZH 已提交
527 528
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
529

C
chengduoZH 已提交
530
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
531
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
532 533
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
534
                   &in_grad_slice);
C
chengduoZH 已提交
535
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
536
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
537
          }
C
chengduoZH 已提交
538 539
        }
      }
L
liym27 已提交
540 541 542 543
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
      }
C
chengduoZH 已提交
544 545 546 547 548 549
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
550 551 552
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
553 554
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
555 556
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
557 558 559 560 561
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
562

C
chengduoZH 已提交
563
          if (!is_expand) {
C
chengduoZH 已提交
564 565 566
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
567
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
568
            im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
569 570
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
571
                   &col);
L
liym27 已提交
572

C
chengduoZH 已提交
573
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
574
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
575
          }
C
chengduoZH 已提交
576 577 578 579

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
580 581
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
582 583 584 585 586
        }
      }
    }
  }
};
Z
zlx 已提交
587

L
lvmengsi 已提交
588 589 590 591 592
template <typename DeviceContext, typename T>
class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
593 594 595
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CPUPlace."));
L
lvmengsi 已提交
596 597 598 599 600 601 602 603
    const Tensor* X = ctx.Input<Tensor>("Input");
    const Tensor* dY = ctx.Input<Tensor>("DOutput");
    const Tensor* ddX = ctx.Input<Tensor>("DDInput");
    const Tensor* ddW_in = ctx.Input<Tensor>("DDFilter");

    Tensor* ddY = ctx.Output<Tensor>("DDOutput");
    Tensor* dW = ctx.Output<Tensor>("DFilter");
    Tensor* dX = ctx.Output<Tensor>("DInput");
604 605
    Tensor W = GET_DATA_SAFELY(ctx.Input<Tensor>("Filter"), "Input", "Filter",
                               "GemmConvDoubleGrad");
L
lvmengsi 已提交
606
    if (!ddY && !dW && !dX) return;
L
liym27 已提交
607 608 609

    const int groups = ctx.Attr<int>("groups");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
L
lvmengsi 已提交
610 611
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
L
liym27 已提交
612 613 614 615 616 617 618 619 620
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_X(X->type());
    Tensor transformed_dY(dY->type());
L
lvmengsi 已提交
621
    Tensor transformed_ddX(X->type());
L
liym27 已提交
622 623 624 625 626 627 628 629

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);
      TransToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);

      ResizeToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);
      TransToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);

L
lvmengsi 已提交
630 631 632 633
      if (ddX) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
        TransToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
      }
L
liym27 已提交
634 635 636
    } else {
      transformed_X = *X;
      transformed_dY = *dY;
L
lvmengsi 已提交
637 638 639
      if (ddX) {
        transformed_ddX = *ddX;
      }
L
liym27 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    }

    // update padding and dilation
    auto in_dims = transformed_X.dims();
    auto filter_dims = W.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_X.dims()[0]);
L
lvmengsi 已提交
655
    std::vector<int64_t> filter_shape_vec(framework::vectorize(W.dims()));
L
liym27 已提交
656 657
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_dY.dims()));
L
lvmengsi 已提交
658 659 660 661

    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    // col_shape [in_channel/group, kh, kw, oh, ow]
L
liym27 已提交
662
    col_shape_vec[0] = transformed_X.dims()[1] / groups;
L
lvmengsi 已提交
663 664 665 666 667 668 669 670 671
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2];
    }
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
    // col_matrix_shape [in_channel/group * kh * kw, oh * ow]
    framework::DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, data_dim + 1);
    // input_shape [Cin, H, W]
L
liym27 已提交
672 673
    framework::DDim input_shape = framework::slice_ddim(
        transformed_X.dims(), 1, transformed_X.dims().size());
L
lvmengsi 已提交
674 675 676 677 678 679
    // filter_matrix_shape [Cout, Cin * kh * kw]
    framework::DDim filter_matrix_shape = {W.dims()[0],
                                           W.numel() / W.dims()[0]};

    W.Resize(filter_matrix_shape);
    framework::DDim output_matrix_shape = {
L
liym27 已提交
680 681 682 683 684
        transformed_dY.dims()[1],
        transformed_dY.numel() /
            (transformed_dY.dims()[0] * transformed_dY.dims()[1])};
    int in_step = static_cast<int>(transformed_X.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_dY.dims()[1]) / groups;
L
lvmengsi 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
    Tensor col;
    Tensor col_matrix;
    if (is_expand) {
      col = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }

    math::SetConstant<DeviceContext, T> set_zero;
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

    // dx convolution double grad:  gemm + col2im(col2vol)
    // dx = ddw * dy  ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
    // oH, oW)
    if (dX && ddW_in) {
      Tensor ddW;
      ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
      dX->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
705 706 707 708 709 710 711 712 713

      Tensor transformed_dX(dX->type());

      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, dX, &transformed_dX);

      } else {
        transformed_dX = *dX;
      }
L
lvmengsi 已提交
714 715 716
      // if is_expand is false, the operation of set_zero is unnecessary
      // because math::matmul will reset dx
      if (is_expand) {
L
liym27 已提交
717
        set_zero(dev_ctx, &transformed_dX, static_cast<T>(0));
L
lvmengsi 已提交
718 719 720 721 722
      }
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;

      for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
723 724 725
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
          Tensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col_matrix.ShareDataWith(dx_slice);
            col_matrix.Resize(col_matrix_shape);
          }
          blas.MatMul(ddw_slice, true, dy_slice, false, T(1.0), &col_matrix,
                      T(0.0));

          if (is_expand && data_dim == 2U) {
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
740 741
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
742 743 744 745 746 747
                   &dx_slice);
          } else if (is_expand && data_dim == 3U) {
            col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice);
          }
        }
      }
L
liym27 已提交
748 749 750
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_dX, dX);
      }
L
lvmengsi 已提交
751 752 753 754 755
    }

    // dw = ddx * dy  ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
    // oH, oW)
    // dw convolution double grad:  im2col(vol2col) + gemm
L
lvmengsi 已提交
756
    if (dW && ddX) {
L
lvmengsi 已提交
757 758 759 760 761 762 763
      dW->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dW, static_cast<T>(0));
      Tensor dW_arr = *dW;
      dW_arr.Resize(filter_matrix_shape);
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
764 765 766
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
767 768 769 770 771 772 773 774 775 776
        for (int g = 0; g < groups; ++g) {
          // im2col
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col.ShareDataWith(ddx_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
777 778
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
          }

          Tensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(dy_slice, false, col_matrix, true, T(1.0), &dw_slice,
                      T(1.0));
        }
      }
    }

    // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
    // w/ddw(Cout, Cin, kh, kw)
    // ddy convolution double grad: im2col(vol2col) + gemm
    if (ddY) {
      ddY->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
796 797 798 799 800 801 802 803 804

      Tensor transformed_ddY(ddY->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddY, &transformed_ddY);
      } else {
        transformed_ddY = *ddY;
      }

      set_zero(dev_ctx, &transformed_ddY, static_cast<T>(0));
L
lvmengsi 已提交
805 806 807
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
808 809
        Tensor ddy_batch =
            transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape);
L
lvmengsi 已提交
810
        for (int g = 0; g < groups; ++g) {
L
liym27 已提交
811
          // gemm
L
lvmengsi 已提交
812
          Tensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step);
L
liym27 已提交
813

L
lvmengsi 已提交
814
          if (ddX) {
L
liym27 已提交
815 816
            Tensor ddx_batch =
                transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
817 818 819 820 821 822 823
            Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
            if (!is_expand) {
              col.ShareDataWith(ddx_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
824 825
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
826 827 828 829
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
            }
L
lvmengsi 已提交
830 831 832
            Tensor w_slice = W.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(w_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(0.0));
L
lvmengsi 已提交
833
          }
L
lvmengsi 已提交
834 835

          if (ddW_in) {
L
liym27 已提交
836
            Tensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
837
            Tensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step);
L
lvmengsi 已提交
838

L
liym27 已提交
839 840
            Tensor ddW;
            ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
L
lvmengsi 已提交
841 842 843 844 845 846
            if (!is_expand) {
              col.ShareDataWith(x_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, x_slice, dilations, strides,
L
liym27 已提交
847 848
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
849 850 851 852 853 854 855 856 857 858 859 860
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col);
            }

            // gemm
            Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(1.0));
          }
        }
      }
L
liym27 已提交
861 862 863
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_ddY, ddY);
      }
L
lvmengsi 已提交
864 865 866 867
    }
  }
};

Z
zlx 已提交
868 869 870 871 872 873 874 875 876
template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
877
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
Z
zlx 已提交
878 879
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
880
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
881 882 883 884 885 886 887 888 889 890

    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1] %
              input->dims()[input->dims().size() - 1],
891 892 893 894 895 896
          0, platform::errors::InvalidArgument(
                 "ShapeError: The output channels must be a multiple of the "
                 "input channels. But receivced output channel number is %d "
                 "and input channel number is %d",
                 output->dims()[output->dims().size() - 1],
                 input->dims()[input->dims().size() - 1]));
L
liym27 已提交
897 898 899
    } else {
      PADDLE_ENFORCE_EQ(
          output->dims()[1] % input->dims()[1], 0,
900 901 902 903 904
          platform::errors::InvalidArgument(
              "ShapeError: The output channels must be a multiple of the "
              "input channels. But receivced output channel number is %d "
              "and input channel number is %d",
              output->dims()[1], input->dims()[1]));
L
liym27 已提交
905 906 907
    }

    // update padding and dilation
908
    auto in_dims = input->dims();
L
liym27 已提交
909 910 911
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
912 913 914 915 916 917 918
    const framework::DataLayout data_layout =
        framework::StringToDataLayout(data_format);
    if (data_layout != framework::DataLayout::kNHWC) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
    }
L
liym27 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }

Z
zlx 已提交
933
    auto& dev_ctx = context.template device_context<DeviceContext>();
934 935 936

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
937 938
      depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                    output, data_layout);
939 940
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
941 942
      depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                    output, data_layout);
943
    }
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
965
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
966 967 968 969 970
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    // update padding and dilation
971
    auto in_dims = input->dims();
L
liym27 已提交
972 973 974
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
975 976 977 978 979 980 981
    const framework::DataLayout data_layout =
        framework::StringToDataLayout(data_format);
    if (data_layout != framework::DataLayout::kNHWC) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
    }
L
liym27 已提交
982 983 984 985 986 987 988 989 990 991 992 993
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }
994 995 996 997 998
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
999
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
1000 1001 1002 1003

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
1004 1005
        depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                               paddings, dilations, input_grad, data_layout);
1006 1007 1008
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
1009 1010
        depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                               paddings, dilations, input_grad, data_layout);
1011
      }
1012 1013 1014 1015 1016
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
1017 1018 1019
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
1020 1021
        depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides,
                                paddings, dilations, filter_grad, data_layout);
1022 1023 1024
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
1025 1026
        depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides,
                                paddings, dilations, filter_grad, data_layout);
1027
      }
1028
    }
Z
zlx 已提交
1029 1030 1031
  }
};

1032 1033
}  // namespace operators
}  // namespace paddle