conv_op.h 17.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/framework/tensor_util.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
23 24 25
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
31 32
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
33

武毅 已提交
34 35
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
36 37
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
38
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
39 40 41 42 43 44 45 46
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE(
      output_size > 0,
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
47 48
  return output_size;
}
49 50 51 52
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
53 54
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
55
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
56 57 58
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
59
  }
C
chengduoZH 已提交
60
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
61
}
武毅 已提交
62 63 64 65 66

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
67 68 69 70
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
71 72
};

C
chengduoZH 已提交
73 74
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
88 89 90
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
91 92 93
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
94 95 96 97

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
98 99
};

C
chengduoZH 已提交
100
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
101 102 103
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
104 105 106 107

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
108 109
};

Q
QI JUN 已提交
110
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
111
class GemmConvKernel : public framework::OpKernel<T> {
112 113 114
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
115 116 117 118
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
119 120 121
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
122
    int groups = context.Attr<int>("groups");
123 124
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
125
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
126

127 128
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
129 130
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
131
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
132
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
133
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
134
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
135

H
hedaoyuan 已提交
136
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
137 138
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
139 140 141 142 143 144 145
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
146 147
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
148
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
149 150 151
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
152
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
153

C
chengduoZH 已提交
154
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
155
    Tensor col;
H
hedaoyuan 已提交
156 157 158
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
159
    Tensor col_matrix;
C
chengduoZH 已提交
160
    if (is_expand) {
161 162 163
      auto tmp_allocation_ptr =
          platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
              framework::product(col_shape) * sizeof(T));
C
chengduo 已提交
164
      col = framework::GetTensor<T>(std::move(tmp_allocation_ptr), col_shape);
C
chengduoZH 已提交
165 166 167
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
168

169 170
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
171

H
hedaoyuan 已提交
172 173
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
174 175
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
176 177 178 179 180 181 182 183
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
184 185
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
186

Y
Yu Yang 已提交
187
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
188 189 190
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
191

C
chengduoZH 已提交
192 193
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
194

C
chengduoZH 已提交
195
        if (!is_expand) {
C
chengduoZH 已提交
196 197 198
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
199
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
200
          // im2col
Q
QI JUN 已提交
201
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
202 203 204
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
205
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
206
          // vol2col
Q
QI JUN 已提交
207
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
208
        }
C
chengduoZH 已提交
209 210 211 212

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
213 214
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
215
      }
216 217 218 219
    }
  }
};

Q
QI JUN 已提交
220
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
221
class GemmConvGradKernel : public framework::OpKernel<T> {
222 223
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
224 225 226 227 228
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
229
    Tensor* filter_grad =
H
hedaoyuan 已提交
230
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
231 232 233 234
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
235

C
chengduoZH 已提交
236 237
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
238
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
239 240
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
241
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
242

C
chengduoZH 已提交
243
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
244

245 246
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
247
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
248
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
249
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
250 251
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
252

C
chengduoZH 已提交
253 254 255
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
256 257 258 259 260 261 262
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
263
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
264 265

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
266 267 268 269
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
270
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
271

272 273
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
274

C
chengduoZH 已提交
275 276
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
277 278 279
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
280 281 282
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
283

C
chengduoZH 已提交
284 285 286 287
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
288

C
chengduoZH 已提交
289
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
290 291 292 293
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
294
    Tensor col_matrix;
C
chengduoZH 已提交
295
    if (is_expand) {
296 297 298
      auto tmp_allocation_ptr =
          platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
              framework::product(col_shape) * sizeof(T));
C
chengduo 已提交
299
      col = framework::GetTensor<T>(std::move(tmp_allocation_ptr), col_shape);
C
chengduoZH 已提交
300 301 302
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
303

Q
QI JUN 已提交
304
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
305
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
306 307 308 309

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
310 311 312
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
313
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
314
      }
Q
QI JUN 已提交
315 316
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
317

C
chengduoZH 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
332 333
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
334
          }
C
chengduoZH 已提交
335 336
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
337

C
chengduoZH 已提交
338
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
339
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
340 341 342
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
343
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
344
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
345
          }
C
chengduoZH 已提交
346 347 348 349 350 351 352 353
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
354 355 356
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
357 358 359 360 361 362 363 364 365
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
366

C
chengduoZH 已提交
367
          if (!is_expand) {
C
chengduoZH 已提交
368 369 370
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
371
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
372
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
373 374 375
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
376
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
377
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
378
          }
C
chengduoZH 已提交
379 380 381 382

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
383 384
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
385 386 387 388 389
        }
      }
    }
  }
};
Z
zlx 已提交
390 391 392 393 394 395 396 397 398 399

template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

X
xzl 已提交
400 401 402
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input->dims()[1], 0,
        "The output channels must be a multiple of the input channels");
Z
zlx 已提交
403 404 405 406 407 408 409
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;

    auto& dev_ctx = context.template device_context<DeviceContext>();
410 411
    depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                  output);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    math::DepthwiseConvInputGradFunctor<DeviceContext, T>
        depthwiseConvInputGrad;
    math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
        depthwiseConvFilterGrad;

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
      depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
446
                             paddings, dilations, input_grad);
447 448 449 450 451 452
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings,
453
                              dilations, filter_grad);
454
    }
Z
zlx 已提交
455 456 457
  }
};

458 459
}  // namespace operators
}  // namespace paddle