提交 fb46345f 编写于 作者: H hedaoyuan

Add groups in convolution operator.

上级 14ae8050
......@@ -31,12 +31,22 @@ class Conv2DOp : public framework::OperatorWithKernel {
auto in = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto out = ctx.Output<Tensor>("Output");
std::vector<int> strides = Attr<std::vector<int>>("strides");
std::vector<int> paddings = Attr<std::vector<int>>("paddings");
int groups = context.Attr<int>("groups");
int input_channels = in->dims()[1];
int output_channels = filter->dims()[0];
PADDLE_ENFORCE_EQ(in->dims().size(), 4, "Conv2DOp intput should be 4-D.");
PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
"Conv2DOp filter should be 4-D.");
PADDLE_ENFORCE_EQ(input_channels, filter->dims()[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");
std::vector<int> strides = Attr<std::vector<int>>("strides");
std::vector<int> paddings = Attr<std::vector<int>>("paddings");
auto output_height =
outputSize(in->dims()[2], filter->dims()[2], paddings[0], strides[0]);
auto output_width =
......@@ -71,6 +81,14 @@ the input, filter and strides, paddings parameters.
)DOC");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.");
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.");
AddAttr<int>(
"groups",
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half.")
.SetDefault(1);
}
};
......
......@@ -38,6 +38,7 @@ class GemmConvKernel : public framework::OpKernel {
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
......@@ -51,11 +52,11 @@ class GemmConvKernel : public framework::OpKernel {
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col calculation
framework::DDim col_shape = {input_channels, filter_height, filter_width,
output_height, output_width};
framework::DDim col_shape = {input_channels / groups, filter_height,
filter_width, output_height, output_width};
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels * filter_height * filter_width,
input_channels / groups * filter_height * filter_width,
output_height * output_width};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
......@@ -78,16 +79,26 @@ class GemmConvKernel : public framework::OpKernel {
const_cast<platform::DeviceContext*>(context.device_context_);
// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
for (int i = 0; i < batch_size; i++) {
// im2col
Tensor in_slice = input->Slice<T>(i, i + 1).Resize(input_shape);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
// gemm
Tensor out_slice = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
math::matmul<Place, T>(filter, false, col_matrix, false, T(1.0),
&out_slice, T(0.0), device_context);
Tensor in_slice_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
Tensor out_slice_batch =
output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
// im2col
Tensor in_slice =
in_slice_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
// gemm
Tensor out_slice =
out_slice_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(filter_slice, false, col_matrix, false, T(1.0),
&out_slice, T(0.0), device_context);
}
}
}
};
......@@ -114,6 +125,7 @@ class GemmConvGradKernel : public framework::OpKernel {
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
// int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册