conv_op.h 44.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
liym27 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20
#include <vector>
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
L
lvmengsi 已提交
23
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
33 34
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
35
constexpr int MaxKeyLength = 256;
36

武毅 已提交
37 38
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
39 40
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
41
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
42
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
L
liym27 已提交
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
C
chengduoZH 已提交
45 46 47 48 49
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
50 51
  return output_size;
}
L
liym27 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding_1, int padding_2, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1;
  PADDLE_ENFORCE_GT(output_size, 0,
                    "Due to the settings of padding(%d, %d), filter_size(%d), "
                    "dilation(%d) and "
                    "stride(%d), the output size is less than 0, please check "
                    "again. Input_size:%d",
                    padding_1, padding_2, filter_size, dilation, stride,
                    input_size);

  return output_size;
}
67 68 69 70

template <typename T = int>
inline void UpdatePaddingAndDilation(std::vector<T>* paddings,
                                     std::vector<T>* dilation,
L
liym27 已提交
71 72
                                     const std::string padding_algorithm,
                                     const framework::DDim data_dims,
73 74
                                     const std::vector<T>& strides,
                                     const std::vector<T>& ksize) {
L
liym27 已提交
75
  // set padding size == data_dims.size() * 2
76
  auto data_shape = framework::vectorize<T>(data_dims);
77 78
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
79
      T copy_pad = *(paddings->begin() + 2 * i);
L
liym27 已提交
80 81 82 83 84 85 86 87
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the input data size.");
  }

88
  // when padding_algorithm is "VALID" or "SAME"
L
liym27 已提交
89
  if (padding_algorithm == "SAME") {
90
    for (int i = 0; i < data_dims.size(); ++i) {
91 92
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
93 94
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
95 96
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
L
liym27 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;

      // dilation
      *(dilation->begin() + i) = 1;
    }

  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

111 112 113 114
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
115 116
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
117
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
118 119 120
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
121
  }
L
liym27 已提交
122 123 124 125 126
  if (paddings.size() != strides.size()) {
    for (size_t j = 0; j < paddings.size(); ++j) {
      padding_0 = padding_0 && (paddings[j] == 0);
    }
  }
C
chengduoZH 已提交
127
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
128
}
武毅 已提交
129

L
liym27 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename DeviceContext, typename T>
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
                                 const Tensor* input,
                                 Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[4];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    in_dims_vec[4] = input->dims()[3];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[3];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
template <typename DeviceContext, typename T>
inline void ResizeToChannelLast(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[4];
    in_dims_vec[4] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

L
liym27 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
template <typename DeviceContext, typename T>
inline void TransToChannelFirst(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 4, 1, 2, 3};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 3, 1, 2};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelLast(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 4, 1};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 1};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}
武毅 已提交
226 227 228 229
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
230 231 232 233
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
234 235
};

C
chengduoZH 已提交
236 237
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
251 252 253
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
254 255 256
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
257 258 259 260

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
261 262
};

C
chengduoZH 已提交
263
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
264 265 266
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
267

Q
qingqing01 已提交
268 269 270 271 272 273 274 275 276 277
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

class ConvOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

278 279 280
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
281 282
};

Q
QI JUN 已提交
283
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
284
class GemmConvKernel : public framework::OpKernel<T> {
285 286 287
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
288 289 290 291
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
292 293 294
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
295 296
    const int groups = context.Attr<int>("groups");
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
297
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
298
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto trans_in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(trans_in_dims, 2, trans_in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);
332

333 334
    auto& dev_ctx = context.template device_context<DeviceContext>();

L
liym27 已提交
335
    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
C
chengduoZH 已提交
336

L
liym27 已提交
337 338
    // filter_shape_vec:
    // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
339
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
L
liym27 已提交
340 341 342 343 344

    // output_shape_vec:
    // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_output.dims()));
345

H
hedaoyuan 已提交
346
    // use col_shape in the im2col calculation
L
liym27 已提交
347 348 349
    // col_shape_vec:
    // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w,
    // o_d,o_h, o_w}
C
chengduoZH 已提交
350
    size_t data_dim = filter_shape_vec.size() - 2;
L
liym27 已提交
351

C
chengduoZH 已提交
352
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
353
    col_shape_vec[0] = trans_in_dims[1] / groups;
C
chengduoZH 已提交
354 355 356 357
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
L
liym27 已提交
358

C
chengduoZH 已提交
359 360
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
361
    // use col_matrix_shape in the gemm calculation
L
liym27 已提交
362 363 364 365
    // size:
    // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h *
    // o_w)

C
chengduoZH 已提交
366
    framework::DDim col_matrix_shape =
L
liym27 已提交
367
        framework::flatten_to_2d(col_shape, data_dim);
C
chengduoZH 已提交
368

C
chengduoZH 已提交
369
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
370

H
hedaoyuan 已提交
371
    Tensor col;
H
hedaoyuan 已提交
372 373 374
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
375
    Tensor col_matrix;
C
chengduoZH 已提交
376
    if (is_expand) {
X
Xin Pan 已提交
377
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
378 379 380
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
381

L
liym27 已提交
382 383
    framework::DDim in_matrix_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
384

H
hedaoyuan 已提交
385 386
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
387 388
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
389
    framework::DDim output_matrix_shape = {
L
liym27 已提交
390 391 392
        transformed_output.dims()[1],
        transformed_output.numel() /
            (transformed_output.dims()[0] * transformed_output.dims()[1])};
C
chengduoZH 已提交
393 394

    // convolution operator: im2col(or vol2col) + gemm
L
liym27 已提交
395 396
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output.dims()[1]) / groups;
C
chengduoZH 已提交
397

Q
QI JUN 已提交
398 399
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
400

Y
Yu Yang 已提交
401
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
402
    for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
403 404 405 406
      Tensor in_batch =
          transformed_input.Slice(i, i + 1).Resize(in_matrix_shape);
      Tensor out_batch =
          transformed_output.Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
407

C
chengduoZH 已提交
408 409
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
410

C
chengduoZH 已提交
411
        if (!is_expand) {
C
chengduoZH 已提交
412 413 414
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
415
        } else if (data_dim == 2U) {
Q
QI JUN 已提交
416
          im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
417 418
                 std::vector<int>{paddings[0], paddings[2], paddings[1],
                                  paddings[3]},
C
chengduoZH 已提交
419
                 &col);
L
liym27 已提交
420

C
chengduoZH 已提交
421
        } else if (data_dim == 3U) {
Q
QI JUN 已提交
422
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
423
        }
C
chengduoZH 已提交
424 425 426 427

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
428 429
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
430
      }
431
    }
L
liym27 已提交
432 433 434 435
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
    }
436 437 438
  }
};

Q
QI JUN 已提交
439
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
440
class GemmConvGradKernel : public framework::OpKernel<T> {
441 442
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
443 444 445 446 447
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
448
    Tensor* filter_grad =
H
hedaoyuan 已提交
449
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
450 451 452 453
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
454

C
chengduoZH 已提交
455 456
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
457
    int groups = context.Attr<int>("groups");
L
liym27 已提交
458
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
H
hedaoyuan 已提交
459
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
460
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
461 462 463 464 465 466 467 468
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
H
hedaoyuan 已提交
469

L
liym27 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);
    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
H
hedaoyuan 已提交
496

497 498
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
499
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
500
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
501
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
502
    std::vector<int64_t> output_shape_vec(
L
liym27 已提交
503
        framework::vectorize(transformed_output_grad.dims()));
C
chengduoZH 已提交
504

C
chengduoZH 已提交
505 506 507
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
508 509
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
510
    col_shape_vec[0] = transformed_input.dims()[1] / groups;
C
chengduoZH 已提交
511 512 513 514
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
515
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
516 517

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
518 519 520 521
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
522
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
523

L
liym27 已提交
524 525
    framework::DDim input_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
526

C
chengduoZH 已提交
527 528
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
529 530 531
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
L
liym27 已提交
532 533 534
        transformed_output_grad.dims()[1],
        transformed_output_grad.numel() / (transformed_output_grad.dims()[0] *
                                           transformed_output_grad.dims()[1])};
C
chengduoZH 已提交
535

C
chengduoZH 已提交
536 537
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
L
liym27 已提交
538 539
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output_grad.dims()[1]) / groups;
C
chengduoZH 已提交
540

C
chengduoZH 已提交
541
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
542

C
chengduoZH 已提交
543 544 545 546
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
547
    Tensor col_matrix;
C
chengduoZH 已提交
548
    if (is_expand) {
X
Xin Pan 已提交
549
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
550 551 552
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
553

Q
QI JUN 已提交
554
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
555
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
556 557 558

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
559 560 561 562
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);
C
chengduoZH 已提交
563

L
liym27 已提交
564 565 566
      } else {
        transformed_input_grad = *input_grad;
      }
C
chengduoZH 已提交
567 568 569
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
L
liym27 已提交
570
        set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
C
chengduoZH 已提交
571
      }
Q
QI JUN 已提交
572 573
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
574

C
chengduoZH 已提交
575 576
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
577 578 579
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            transformed_input_grad.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
580 581 582 583 584 585 586 587 588 589
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
590 591
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
592
          }
C
chengduoZH 已提交
593 594
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
595

C
chengduoZH 已提交
596
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
597
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
598 599
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
600
                   &in_grad_slice);
C
chengduoZH 已提交
601
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
602
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
603
          }
C
chengduoZH 已提交
604 605
        }
      }
L
liym27 已提交
606 607 608 609
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
      }
C
chengduoZH 已提交
610 611 612 613 614 615
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
616 617 618
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
619 620
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
621 622
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
623 624 625 626 627
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
628

C
chengduoZH 已提交
629
          if (!is_expand) {
C
chengduoZH 已提交
630 631 632
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
633
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
634
            im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
635 636
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
637
                   &col);
L
liym27 已提交
638

C
chengduoZH 已提交
639
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
640
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
641
          }
C
chengduoZH 已提交
642 643 644 645

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
646 647
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
648 649 650 651 652
        }
      }
    }
  }
};
Z
zlx 已提交
653

L
lvmengsi 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
template <typename DeviceContext, typename T>
class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      "It must use CPUPlace.");
    const Tensor* X = ctx.Input<Tensor>("Input");
    const Tensor* dY = ctx.Input<Tensor>("DOutput");
    const Tensor* ddX = ctx.Input<Tensor>("DDInput");
    const Tensor* ddW_in = ctx.Input<Tensor>("DDFilter");

    Tensor* ddY = ctx.Output<Tensor>("DDOutput");
    Tensor* dW = ctx.Output<Tensor>("DFilter");
    Tensor* dX = ctx.Output<Tensor>("DInput");
    Tensor W = detail::Ref(ctx.Input<Tensor>("Filter"),
                           "Cannot find input Filter(%s) in scope)",
H
hong 已提交
671
                           ctx.InputNames("Filter")[0]);
L
lvmengsi 已提交
672
    if (!ddY && !dW && !dX) return;
L
liym27 已提交
673 674 675

    const int groups = ctx.Attr<int>("groups");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
L
lvmengsi 已提交
676 677
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
L
liym27 已提交
678 679 680 681 682 683 684 685 686
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_X(X->type());
    Tensor transformed_dY(dY->type());
L
lvmengsi 已提交
687
    Tensor transformed_ddX(X->type());
L
liym27 已提交
688 689 690 691 692 693 694 695

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);
      TransToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);

      ResizeToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);
      TransToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);

L
lvmengsi 已提交
696 697 698 699
      if (ddX) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
        TransToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
      }
L
liym27 已提交
700 701 702
    } else {
      transformed_X = *X;
      transformed_dY = *dY;
L
lvmengsi 已提交
703 704 705
      if (ddX) {
        transformed_ddX = *ddX;
      }
L
liym27 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    }

    // update padding and dilation
    auto in_dims = transformed_X.dims();
    auto filter_dims = W.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_X.dims()[0]);
L
lvmengsi 已提交
721
    std::vector<int64_t> filter_shape_vec(framework::vectorize(W.dims()));
L
liym27 已提交
722 723
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_dY.dims()));
L
lvmengsi 已提交
724 725 726 727

    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    // col_shape [in_channel/group, kh, kw, oh, ow]
L
liym27 已提交
728
    col_shape_vec[0] = transformed_X.dims()[1] / groups;
L
lvmengsi 已提交
729 730 731 732 733 734 735 736 737
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2];
    }
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
    // col_matrix_shape [in_channel/group * kh * kw, oh * ow]
    framework::DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, data_dim + 1);
    // input_shape [Cin, H, W]
L
liym27 已提交
738 739
    framework::DDim input_shape = framework::slice_ddim(
        transformed_X.dims(), 1, transformed_X.dims().size());
L
lvmengsi 已提交
740 741 742 743 744 745
    // filter_matrix_shape [Cout, Cin * kh * kw]
    framework::DDim filter_matrix_shape = {W.dims()[0],
                                           W.numel() / W.dims()[0]};

    W.Resize(filter_matrix_shape);
    framework::DDim output_matrix_shape = {
L
liym27 已提交
746 747 748 749 750
        transformed_dY.dims()[1],
        transformed_dY.numel() /
            (transformed_dY.dims()[0] * transformed_dY.dims()[1])};
    int in_step = static_cast<int>(transformed_X.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_dY.dims()[1]) / groups;
L
lvmengsi 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
    Tensor col;
    Tensor col_matrix;
    if (is_expand) {
      col = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }

    math::SetConstant<DeviceContext, T> set_zero;
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

    // dx convolution double grad:  gemm + col2im(col2vol)
    // dx = ddw * dy  ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
    // oH, oW)
    if (dX && ddW_in) {
      Tensor ddW;
      ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
      dX->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
771 772 773 774 775 776 777 778 779

      Tensor transformed_dX(dX->type());

      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, dX, &transformed_dX);

      } else {
        transformed_dX = *dX;
      }
L
lvmengsi 已提交
780 781 782
      // if is_expand is false, the operation of set_zero is unnecessary
      // because math::matmul will reset dx
      if (is_expand) {
L
liym27 已提交
783
        set_zero(dev_ctx, &transformed_dX, static_cast<T>(0));
L
lvmengsi 已提交
784 785 786 787 788
      }
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;

      for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
789 790 791
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
          Tensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col_matrix.ShareDataWith(dx_slice);
            col_matrix.Resize(col_matrix_shape);
          }
          blas.MatMul(ddw_slice, true, dy_slice, false, T(1.0), &col_matrix,
                      T(0.0));

          if (is_expand && data_dim == 2U) {
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
806 807
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
808 809 810 811 812 813
                   &dx_slice);
          } else if (is_expand && data_dim == 3U) {
            col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice);
          }
        }
      }
L
liym27 已提交
814 815 816
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_dX, dX);
      }
L
lvmengsi 已提交
817 818 819 820 821
    }

    // dw = ddx * dy  ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
    // oH, oW)
    // dw convolution double grad:  im2col(vol2col) + gemm
L
lvmengsi 已提交
822
    if (dW && ddX) {
L
lvmengsi 已提交
823 824 825 826 827 828 829
      dW->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dW, static_cast<T>(0));
      Tensor dW_arr = *dW;
      dW_arr.Resize(filter_matrix_shape);
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
830 831 832
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
833 834 835 836 837 838 839 840 841 842
        for (int g = 0; g < groups; ++g) {
          // im2col
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col.ShareDataWith(ddx_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
843 844
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
          }

          Tensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(dy_slice, false, col_matrix, true, T(1.0), &dw_slice,
                      T(1.0));
        }
      }
    }

    // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
    // w/ddw(Cout, Cin, kh, kw)
    // ddy convolution double grad: im2col(vol2col) + gemm
    if (ddY) {
      ddY->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
862 863 864 865 866 867 868 869 870

      Tensor transformed_ddY(ddY->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddY, &transformed_ddY);
      } else {
        transformed_ddY = *ddY;
      }

      set_zero(dev_ctx, &transformed_ddY, static_cast<T>(0));
L
lvmengsi 已提交
871 872 873
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
874 875
        Tensor ddy_batch =
            transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape);
L
lvmengsi 已提交
876
        for (int g = 0; g < groups; ++g) {
L
liym27 已提交
877
          // gemm
L
lvmengsi 已提交
878
          Tensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step);
L
liym27 已提交
879

L
lvmengsi 已提交
880
          if (ddX) {
L
liym27 已提交
881 882
            Tensor ddx_batch =
                transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
883 884 885 886 887 888 889
            Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
            if (!is_expand) {
              col.ShareDataWith(ddx_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
890 891
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
892 893 894 895
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
            }
L
lvmengsi 已提交
896 897 898
            Tensor w_slice = W.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(w_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(0.0));
L
lvmengsi 已提交
899
          }
L
lvmengsi 已提交
900 901

          if (ddW_in) {
L
liym27 已提交
902
            Tensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
903
            Tensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step);
L
lvmengsi 已提交
904

L
liym27 已提交
905 906
            Tensor ddW;
            ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
L
lvmengsi 已提交
907 908 909 910 911 912
            if (!is_expand) {
              col.ShareDataWith(x_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, x_slice, dilations, strides,
L
liym27 已提交
913 914
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
915 916 917 918 919 920 921 922 923 924 925 926
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col);
            }

            // gemm
            Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(1.0));
          }
        }
      }
L
liym27 已提交
927 928 929
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_ddY, ddY);
      }
L
lvmengsi 已提交
930 931 932 933
    }
  }
};

Z
zlx 已提交
934 935 936 937 938 939 940 941 942
template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
943
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
Z
zlx 已提交
944 945
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
946
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1] %
              input->dims()[input->dims().size() - 1],
          0, "The output channels must be a multiple of the input channels");
    } else {
      PADDLE_ENFORCE_EQ(
          output->dims()[1] % input->dims()[1], 0,
          "The output channels must be a multiple of the input channels");
    }
    // transform tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }

Z
zlx 已提交
1000
    auto& dev_ctx = context.template device_context<DeviceContext>();
1001 1002 1003

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
L
liym27 已提交
1004 1005
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
1006 1007
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
L
liym27 已提交
1008 1009 1010 1011 1012 1013
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
    }
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
1014
    }
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
1036
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
1046

L
liym27 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);

    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }
1080 1081 1082 1083 1084
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);

      } else {
        transformed_input_grad = *input_grad;
      }

      set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
1095 1096 1097 1098

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
L
liym27 已提交
1099 1100 1101
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
1102 1103 1104
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
L
liym27 已提交
1105 1106 1107 1108 1109 1110 1111
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
      }
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
1112
      }
1113 1114 1115 1116 1117
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
1118 1119 1120
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
L
liym27 已提交
1121 1122 1123
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1124 1125 1126
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
L
liym27 已提交
1127 1128 1129
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1130
      }
1131
    }
Z
zlx 已提交
1132 1133 1134
  }
};

1135 1136
}  // namespace operators
}  // namespace paddle