Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8d0b0cb4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8d0b0cb4
编写于
4月 20, 2020
作者:
Y
Yiqun Liu
提交者:
GitHub
4月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Op(conv2d_fusion) error message enhancement. (#23596)
上级
21eca836
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
194 addition
and
187 deletion
+194
-187
paddle/fluid/imperative/infer_shape_context.h
paddle/fluid/imperative/infer_shape_context.h
+6
-4
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+27
-28
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+34
-13
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+1
-1
paddle/fluid/operators/fused/conv_fusion_op.cc
paddle/fluid/operators/fused/conv_fusion_op.cc
+50
-96
paddle/fluid/operators/fused/conv_fusion_op.cu
paddle/fluid/operators/fused/conv_fusion_op.cu
+60
-27
python/paddle/fluid/tests/unittests/test_conv2d_fusion_op.py
python/paddle/fluid/tests/unittests/test_conv2d_fusion_op.py
+16
-18
未找到文件。
paddle/fluid/imperative/infer_shape_context.h
浏览文件 @
8d0b0cb4
...
...
@@ -285,10 +285,12 @@ class DygraphInferShapeContext : public framework::InferShapeContext {
it
,
var_base_map_out_
->
end
(),
platform
::
errors
::
NotFound
(
"can not find [%s] in output"
,
name
));
PADDLE_ENFORCE_EQ
(
it
->
second
.
size
(),
dims
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"dim size [%d] is not match output var number [%d]"
,
dims
.
size
(),
it
->
second
.
size
()));
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of dims is expected to be equal to the "
"number of Outputs(%s). But receieved: the number of "
"dims = %d, the number of Outputs(%s) = %d."
,
name
,
dims
.
size
(),
name
,
it
->
second
.
size
()));
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
it
->
second
[
i
])
{
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
8d0b0cb4
...
...
@@ -30,10 +30,10 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
void
ConvOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
std
::
vector
<
int64_t
>
ConvOp
::
ComputeOutputShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Input"
),
"Input"
,
"Input"
,
"Conv"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Filter"
),
"Input"
,
"Filter"
,
"Conv"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Output"
),
"Output"
,
"Output"
,
"Conv"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
...
...
@@ -54,30 +54,30 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
,
true
,
platform
::
errors
::
InvalidArgument
(
"The input of Op(
conv) should be
4-D or 5-D Tensor. But "
"received:
%u-D Tensor, the shape of input
is [%s]."
,
"The input of Op(
Conv) should be a
4-D or 5-D Tensor. But "
"received:
input's dimension is %u, input's shape
is [%s]."
,
in_dims
.
size
(),
in_dims
));
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
filter_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The input's dimension
size and filter's dimension size
of "
"Op(
conv) should be equal. But received: the shape of input
is [%s], "
"the
dimension size of input is [%d], the shape of filter
is [%s], "
"the
dimension size of filter is [%d]
."
,
"The input's dimension
and filter's dimension
of "
"Op(
Conv) should be equal. But received: the input's shape
is [%s], "
"the
input's dimension is %d; the filter's shape
is [%s], "
"the
filter's dimension is %d
."
,
in_dims
,
in_dims
.
size
(),
filter_dims
,
filter_dims
.
size
()));
int
in_sub_stride_size
=
in_dims
.
size
()
-
strides
.
size
();
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
strides
.
size
()
+
2U
,
platform
::
errors
::
InvalidArgument
(
"The di
mension size of input minus the size of
"
"
Attr(stride) must be euqal to 2 for Op(conv).
"
"But received:
the dimension size of input minus the size
"
"
of Attr(stride) is [%d], the
"
"
input's dimension size is [%d], the shape of input "
"is [%s], the Attr(stride)'s size is [%d]."
,
in_sub_stride_size
,
in_dims
.
size
(),
in_dims
,
strides
.
size
()
));
"The di
fference of input's dimension and Attr(strides)'s
"
"
length must be euqal to 2 for Op(Conv).
"
"But received:
input's dimension is %d, input's shape is [%s];
"
"
Attr(stride)'s length is %d, Attr(stride) is [%s];
"
"
difference of input's dimention and Attr(strides)'s length = %u."
,
in_dims
.
size
(),
in_dims
,
strides
.
size
()
,
framework
::
make_ddim
(
strides
),
in_sub_stride_size
));
const
auto
input_channels
=
channel_last
?
in_dims
[
in_dims
.
size
()
-
1
]
:
in_dims
[
1
];
...
...
@@ -85,31 +85,31 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
input_channels
,
filter_dims
[
1
]
*
groups
,
platform
::
errors
::
InvalidArgument
(
"The number of input
channels should be equal to filter channels *
"
"
groups for Op(conv). But received: the input's channels is [%d]
, "
"the
shape of input is [%s], the filter's channel is [%d], the shap
e "
"
of filter is [%s], the groups is [%d], the data_format is %s. The
"
"error may come from wrong data_format setting."
,
"The number of input
's channels should be equal to filter's channels
"
"
* groups for Op(Conv). But received: the input's channels is %d
, "
"the
input's shape is [%s]; the filter's channels is %d, th
e "
"
filter's shape is [%s]; the groups is %d, the data_format is %s.
"
"
The
error may come from wrong data_format setting."
,
input_channels
,
in_dims
,
filter_dims
[
1
],
filter_dims
,
groups
,
data_format
));
PADDLE_ENFORCE_EQ
(
filter_dims
[
0
]
%
groups
,
0
,
platform
::
errors
::
InvalidArgument
(
"The number of output
channels of Op(conv) should be divided
"
"
by groups. But received: the output channels is [%d], the shape
"
"
of filter is [%s] (the first dimension of filter is output
"
"
channel), the groups is [%d]
."
,
"The number of output
's channels (filter's first dimension) of
"
"
Op(Conv) should be divided by groups. But received:
"
"
the output channels is %d, the filter's shape is [%s],
"
"
the groups is %d
."
,
filter_dims
[
0
],
filter_dims
,
groups
));
framework
::
DDim
in_data_dims
;
framework
::
DDim
filter_data_dims
;
if
(
channel_last
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
framework
::
DDim
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
...
...
@@ -133,8 +133,7 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
output_shape
.
push_back
(
filter_dims
[
0
]);
}
ctx
->
SetOutputDim
(
"Output"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"Input"
,
"Output"
);
return
output_shape
;
}
framework
::
OpKernelType
ConvOp
::
GetExpectedKernelType
(
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
8d0b0cb4
...
...
@@ -41,10 +41,13 @@ inline int ConvOutputSize(int input_size, int filter_size, int dilation,
int
output_size
=
(
input_size
+
2
*
padding
-
dkernel
)
/
stride
+
1
;
PADDLE_ENFORCE_GT
(
output_size
,
0
,
"Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
"stride(%d), the output size is less than 0, please check "
"again. Input_size:%d"
,
padding
,
filter_size
,
dilation
,
stride
,
input_size
);
platform
::
errors
::
InvalidArgument
(
"The output's size is expected to be greater than 0. "
"But recieved: output's size is %d. The output's size is computed by "
"((input_size + 2 * padding - (dilation * (filter_size - 1) + 1)) / "
"stride + 1), where input_size is %d, padding is %d, "
"filter_size is %d, dilation is %d, stride is %d."
,
output_size
,
input_size
,
padding
,
filter_size
,
dilation
,
stride
));
return
output_size
;
}
...
...
@@ -53,13 +56,16 @@ inline int ConvOutputSize(int input_size, int filter_size, int dilation,
int
padding_1
,
int
padding_2
,
int
stride
)
{
const
int
dkernel
=
dilation
*
(
filter_size
-
1
)
+
1
;
int
output_size
=
(
input_size
+
padding_1
+
padding_2
-
dkernel
)
/
stride
+
1
;
PADDLE_ENFORCE_GT
(
output_size
,
0
,
"Due to the settings of padding(%d, %d), filter_size(%d), "
"dilation(%d) and "
"stride(%d), the output size is less than 0, please check "
"again. Input_size:%d"
,
padding_1
,
padding_2
,
filter_size
,
dilation
,
stride
,
input_size
);
PADDLE_ENFORCE_GT
(
output_size
,
0
,
platform
::
errors
::
InvalidArgument
(
"The output's size is expected to be greater than 0. "
"But recieved: output's size is %d. The output's size is computed by "
"((input_size + padding_1 + padding_2 - (dilation * (filter_size - "
"1) + 1)) / stride + 1), where input_size is %d, padding is "
"(%d, %d), filter_size is %d, dilation is %d, stride is %d."
,
output_size
,
input_size
,
padding_1
,
padding_2
,
filter_size
,
dilation
,
stride
));
return
output_size
;
}
...
...
@@ -81,7 +87,13 @@ inline void UpdatePaddingAndDilation(std::vector<T>* paddings,
}
else
{
PADDLE_ENFORCE_EQ
(
data_dims
.
size
()
*
2
,
paddings
->
size
(),
"Paddings size should be the same or twice as the input data size."
);
platform
::
errors
::
InvalidArgument
(
"Attribute padding's size should be the same or twice as the "
"input's dimension. "
"But recieved: padding's size is %d, padding is [%s]; input's "
"dimension is %d, input's shape is [%s]."
,
paddings
->
size
(),
framework
::
make_ddim
(
*
paddings
),
data_dims
.
size
(),
data_dims
));
}
// when padding_algorithm is "VALID" or "SAME"
...
...
@@ -252,9 +264,18 @@ class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
class
ConvOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
std
::
vector
<
int64_t
>
output_shape
=
ComputeOutputShape
(
ctx
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Output"
),
"Output"
,
"Output"
,
"Conv"
);
ctx
->
SetOutputDim
(
"Output"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"Input"
,
"Output"
);
}
protected:
std
::
vector
<
int64_t
>
ComputeOutputShape
(
framework
::
InferShapeContext
*
ctx
)
const
;
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
8d0b0cb4
...
...
@@ -30,7 +30,7 @@ class FillConstantOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE
(
shape
[
i
],
0
,
platform
::
errors
::
InvalidArgument
(
"Each value of attribute 'shape' is expected to be
greater
"
"Each value of attribute 'shape' is expected to be
no less
"
"than 0. But recieved: shape[%u] = %d; shape = [%s]."
,
i
,
shape
[
i
],
framework
::
make_ddim
(
shape
)));
}
...
...
paddle/fluid/operators/fused/conv_fusion_op.cc
浏览文件 @
8d0b0cb4
...
...
@@ -65,108 +65,62 @@ class Conv2DFusionOp : public operators::ConvOp {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Input"
),
true
,
"Input(Input) of ConvOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Filter"
),
true
,
"Input(Filter) of ConvOp should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"dilations"
);
std
::
string
padding_algorithm
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"padding_algorithm"
);
int
groups
=
ctx
->
Attrs
().
Get
<
int
>
(
"groups"
);
framework
::
DDim
in_data_dims
;
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
PADDLE_ENFORCE_EQ
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
,
true
,
"ShapeError: Conv_fusion input should be 4-D or 5-D tensor. But "
"received: %u-D Tensor,"
"the shape of Conv_fusion input is [%s]"
,
in_dims
.
size
(),
in_dims
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
filter_dims
.
size
(),
"ShapeError: Conv_fusion input dimension and filter "
"dimension should be the "
"equal."
"But received: the shape of Conv_fusion input is [%s], "
"input dimension of Conv_fusion "
"input is [%d],"
"the shape of filter is [%s], the filter dimension of "
"Conv_fusion is [%d]"
,
in_dims
,
in_dims
.
size
(),
filter_dims
,
filter_dims
.
size
());
int
in_sub_stride_size
=
in_dims
.
size
()
-
strides
.
size
();
PADDLE_ENFORCE_EQ
(
in_dims
.
size
()
-
strides
.
size
()
==
2U
,
true
,
"ShapeError: the dimension of input minus the dimension of "
"stride must be euqal to 2."
"But received: the dimension of input minus the dimension "
"of stride is [%d], the"
"input dimension of Conv_fusion is [%d], the shape of Conv_fusion "
"input "
"is [%s], the stride"
"dimension of Conv_fusion is [%d]"
,
in_sub_stride_size
,
in_dims
.
size
(),
in_dims
,
strides
.
size
());
const
auto
input_channels
=
in_dims
[
1
];
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Input"
),
"Input"
,
"Input"
,
"Conv2DFusion"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Bias"
),
"Input"
,
"Bias"
,
"Conv2DFusion"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
input_channels
,
filter_dims
[
1
]
*
groups
,
"ShapeError: The number of input channels should be equal to filter "
"channels * groups. But received: the input channels is [%d], the shape"
"of input is [%s], the filter channel is [%d], the shape of filter is "
"[%s],"
"the groups is [%d]"
,
in_dims
[
1
],
in_dims
,
filter_dims
[
1
],
filter_dims
,
groups
);
PADDLE_ENFORCE_EQ
(
filter_dims
[
0
]
%
groups
,
0
,
"ShapeError: The number of output channels should be divided by groups."
"But received: the output channels is [%d], the shape of filter is [%s]"
"(the first dimension of filter is output channel), the groups is [%d]"
,
filter_dims
[
0
],
filter_dims
,
groups
);
framework
::
DDim
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
]});
output_shape
.
push_back
(
filter_dims
[
0
]);
for
(
int
i
=
0
;
i
<
in_data_dims
.
size
();
++
i
)
{
if
((
!
ctx
->
IsRuntime
())
&&
(
in_data_dims
[
i
]
<=
0
||
filter_dims
[
i
+
2
]
<=
0
))
{
output_shape
.
push_back
(
-
1
);
}
else
{
output_shape
.
push_back
(
ConvOutputSize
(
in_data_dims
[
i
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
2
*
i
],
paddings
[
2
*
i
+
1
],
strides
[
i
]));
}
}
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Output"
),
true
,
"Output(Output) of ConvOp should not be null."
);
in_dims
.
size
(),
4U
,
platform
::
errors
::
InvalidArgument
(
"The input's dimension of Operator(Conv2DFusion) is expected "
"to be 4. But received: input's dimension = %u, shape = [%s]."
,
in_dims
.
size
(),
in_dims
));
// In some case, attribute data_format is "AnyLayout".
std
::
string
data_format
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
PermissionDenied
(
"Operator(Conv2DFusion) only supports data format of "
"channel first (NCHW) now. But recieved: data_format = '%s'."
,
data_format
));
std
::
vector
<
int64_t
>
output_shape
=
ComputeOutputShape
(
ctx
);
ctx
->
SetOutputDim
(
"Output"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"Input"
,
"Output"
);
std
::
vector
<
int
>
channels
=
std
::
vector
<
int
>
split_
channels
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"split_channels"
);
if
(
channels
.
size
())
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutputs
(
"Outputs"
),
true
,
"Output(Outputs) of ConvOp should not be null."
);
std
::
vector
<
framework
::
DDim
>
oshapes
;
oshapes
.
reserve
(
channels
.
size
());
for
(
size_t
i
=
0
;
i
<
channels
.
size
();
++
i
)
{
oshapes
.
push_back
(
{
output_shape
[
0
],
channels
[
i
],
output_shape
[
2
],
output_shape
[
3
]});
if
(
split_channels
.
size
())
{
OP_INOUT_CHECK
(
ctx
->
HasOutputs
(
"Outputs"
),
"Output"
,
"Outputs"
,
"Conv2DFusion"
);
PADDLE_ENFORCE_EQ
(
ctx
->
Outputs
(
"Outputs"
).
size
(),
split_channels
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of Output(Outputs) of operator 'Conv2DFusion' is "
"expected to be equal to the length of Attr(split_channels). But "
"reiceved: the number of Output(Outputs) = %u; the length of "
"Attr(split_channels) = %u, the content = [%s]."
,
ctx
->
Outputs
(
"Outputs"
).
size
(),
split_channels
.
size
(),
framework
::
make_ddim
(
split_channels
)));
int
split_channels_sum
=
0
;
std
::
vector
<
framework
::
DDim
>
output_shapes
(
split_channels
.
size
());
for
(
size_t
i
=
0
;
i
<
split_channels
.
size
();
++
i
)
{
split_channels_sum
+=
split_channels
[
i
];
output_shapes
[
i
]
=
framework
::
make_ddim
({
output_shape
[
0
],
split_channels
[
i
],
output_shape
[
2
],
output_shape
[
3
]});
}
ctx
->
SetOutputsDim
(
"Outputs"
,
oshapes
);
PADDLE_ENFORCE_EQ
(
split_channels_sum
,
output_shape
[
1
],
platform
::
errors
::
InvalidArgument
(
"The sum of Attr(split_channels) is expected to be equal to the "
"total output channels. But recieved: the sum of "
"Attr(split_channels) = %d, the total output channels = %d."
,
split_channels_sum
,
output_shape
[
1
]));
ctx
->
SetOutputsDim
(
"Outputs"
,
output_shapes
);
}
}
};
...
...
paddle/fluid/operators/fused/conv_fusion_op.cu
浏览文件 @
8d0b0cb4
...
...
@@ -46,7 +46,6 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
PADDLE_ENFORCE_NOT_NULL
(
bias
,
"The bias should not be null."
);
auto
*
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -61,28 +60,25 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
bool
exhaustive_search
=
FLAGS_cudnn_exhaustive_search
||
ctx
.
Attr
<
bool
>
(
"exhaustive_search"
);
// const T* input_data = input->data<T>();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
// T* output_data = output->mutable_data<T>(ctx.GetPlace());
const
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
Tensor
transformed_input_channel
(
input
->
type
());
Tensor
transformed_output
(
output
->
type
());
T
*
output_data
=
nullptr
;
transformed_input_channel
=
*
input
;
transformed_output
=
*
output
;
output_data
=
transformed_output
.
data
<
T
>
();
T
*
output_data
=
transformed_output
.
data
<
T
>
();
const
T
*
residual_data
=
residual
?
residual
->
data
<
T
>
()
:
output_data
;
// update padding and dilation
auto
in_dims
=
transformed_input_channel
.
dims
();
auto
filter_dims
=
filter
->
dims
();
framework
::
DDim
in_data_dims
;
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
framework
::
DDim
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
framework
::
DDim
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
...
...
@@ -134,7 +130,10 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
&
transformed_input
);
}
break
;
default:
PADDLE_THROW
(
"ConvOp only support tensors with 4 or 5 dimensions."
);
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
"But recieved the actual dimension = %d, shape = [%s]."
,
rank
,
transformed_input_channel
.
dims
()));
}
}
else
{
...
...
@@ -168,7 +167,13 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
conv_desc
.
descriptor
<
T
>
(
padding_common
,
strides
,
dilations
);
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
cudnn_conv_desc
,
groups
));
groups
),
platform
::
errors
::
External
(
"Call of cudnnSetConvolutionGroupCount(cudnn_conv_desc, groups) "
"failed, where cudnn_conv_desc is configured: padding = [%s], "
"strides = [%s], dilations = [%s]; groups = %d"
,
framework
::
make_ddim
(
padding_common
),
framework
::
make_ddim
(
strides
),
framework
::
make_ddim
(
dilations
),
groups
));
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
<
int
>
(
transformed_input
.
dims
()));
...
...
@@ -199,8 +204,15 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_DEFAULT_MATH
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_DEFAULT_MATH
),
platform
::
errors
::
External
(
"Call of cudnnSetConvolutionMathType(cudnn_conv_desc, "
"CUDNN_DEFAULT_MATH) failed, where cudnn_conv_desc is configured: "
"padding = %d, strides = %d, dilations = %d."
,
framework
::
make_ddim
(
padding_common
),
framework
::
make_ddim
(
strides
),
framework
::
make_ddim
(
dilations
)));
auto
x_dims
=
framework
::
vectorize
(
transformed_input
.
dims
());
auto
f_dims
=
framework
::
vectorize
(
filter
->
dims
());
...
...
@@ -209,7 +221,9 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
algo
));
workspace_size_limit
,
&
algo
),
platform
::
errors
::
External
(
"Call of cudnnGetConvolutionForwardAlgorithm failed."
));
VLOG
(
3
)
<<
"cuDNN forward algo "
<<
algo
;
}
else
{
std
::
function
<
cudnnConvolutionFwdAlgo_t
()
>
search_func
=
...
...
@@ -223,7 +237,9 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
handle
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
cudnn_output_desc
,
output_data
,
kNUM_CUDNN_FWD_ALGS
,
&
returned_algo_count
,
fwd_perf_stat
.
data
(),
cudnn_workspace
,
workspace_size_limit
));
fwd_perf_stat
.
data
(),
cudnn_workspace
,
workspace_size_limit
),
platform
::
errors
::
External
(
"Call of cudnnFindConvolutionForwardAlgorithmEx failed."
));
};
workspace_handle
.
RunFuncSync
(
cudnn_find_func
,
workspace_size_limit
);
VLOG
(
3
)
<<
"Perf result: (algo: stat, time, memory)"
;
...
...
@@ -257,9 +273,16 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
"workspace_size to be allocated exceeds the limit"
);
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
),
platform
::
errors
::
External
(
"Call of cudnnGetConvolutionForwardWorkspaceSize failed."
));
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
platform
::
errors
::
InvalidArgument
(
"The actual workspace size to be allocated for cuDNN is expected "
"to be less than the limit. But recieved: the actual workspace "
"size = %d, limit = %d."
,
workspace_size_in_bytes
,
workspace_size_limit
));
if
((
activation
==
"identity"
)
&&
(
!
residual
))
{
// Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
...
...
@@ -269,15 +292,20 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
// ------------- cudnn conv forward and bias add ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
),
platform
::
errors
::
External
(
"Call of cudnnConvolutionForward failed."
));
};
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnAddTensor
(
handle
,
&
alpha
,
cudnn_bias_desc
,
bias_data
,
&
alpha
,
cudnn_output_desc
,
output_data
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnAddTensor
(
handle
,
&
alpha
,
cudnn_bias_desc
,
bias_data
,
&
alpha
,
cudnn_output_desc
,
output_data
),
platform
::
errors
::
External
(
"Call of cudnnAddTensor failed."
));
}
else
{
if
(
activation
==
"identity"
)
{
algo
=
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
;
...
...
@@ -292,7 +320,9 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
alpha2
,
cudnn_output_desc
,
residual_data
,
cudnn_bias_desc
,
bias_data
,
cudnn_act_desc
,
cudnn_output_desc
,
output_data
));
cudnn_act_desc
,
cudnn_output_desc
,
output_data
),
platform
::
errors
::
External
(
"Call of cudnnConvolutionBiasActivationForward failed."
));
};
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
...
...
@@ -314,7 +344,10 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
}
}
else
{
// TODO(qingiqng): do copy when batch size large than 1
PADDLE_THROW
(
"Batch size greater than 1 is Unsupported"
);
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Input with batch size greater than 1 is unsupported. The recieved "
"batch size is %d, Input's shape is [%s]."
,
x_dims
[
0
],
framework
::
make_ddim
(
x_dims
)));
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_conv2d_fusion_op.py
浏览文件 @
8d0b0cb4
...
...
@@ -24,14 +24,14 @@ from test_conv2d_op import conv2d_forward_naive
def
create_test_padding_SAME_class
(
parent
):
class
TestPaddingS
MA
ECase
(
parent
):
class
TestPaddingS
AM
ECase
(
parent
):
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
padding_algorithm
=
"SAME"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingSAMEOp"
)
TestPaddingS
MA
ECase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingS
MA
ECase
TestPaddingS
AM
ECase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingS
AM
ECase
def
create_test_padding_VALID_class
(
parent
):
...
...
@@ -52,16 +52,15 @@ class TestConv2dFusionOp(OpTest):
self
.
data_format
=
"NCHW"
self
.
dtype
=
np
.
float32
self
.
activation
=
'relu'
self
.
add_bias
=
True
self
.
add_residual_data
=
True
self
.
channels
=
None
self
.
split_
channels
=
None
self
.
outputs
=
None
self
.
padding_algorithm
=
"EXIPLICIT"
self
.
init_group
()
self
.
init_dilation
()
self
.
init_test_case
()
self
.
init_
bias_
residual
()
self
.
init_residual
()
self
.
init_activation
()
self
.
init_paddings
()
self
.
set_search_method
()
...
...
@@ -74,6 +73,7 @@ class TestConv2dFusionOp(OpTest):
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
bias
=
np
.
random
.
random
(
self
.
filter_size
[
0
]).
astype
(
self
.
dtype
)
self
.
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input
,
filter
,
self
.
groups
,
conv2d_param
,
self
.
padding_algorithm
,
...
...
@@ -83,7 +83,8 @@ class TestConv2dFusionOp(OpTest):
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
),
'Bias'
:
OpTest
.
np_dtype_to_fluid_dtype
(
bias
)
}
if
self
.
add_residual_data
:
...
...
@@ -93,10 +94,8 @@ class TestConv2dFusionOp(OpTest):
residual_data
)
self
.
output
+=
residual_data
if
self
.
add_bias
:
bias
=
np
.
random
.
random
(
self
.
filter_size
[
0
]).
astype
(
self
.
dtype
)
self
.
inputs
[
'Bias'
]
=
OpTest
.
np_dtype_to_fluid_dtype
(
bias
)
self
.
output
=
self
.
output
+
bias
.
reshape
((
1
,
bias
.
size
,
1
,
1
))
# Add bias
self
.
output
=
self
.
output
+
bias
.
reshape
((
1
,
bias
.
size
,
1
,
1
))
assert
self
.
activation
in
[
'relu'
,
'identity'
]
if
self
.
activation
==
'relu'
:
...
...
@@ -110,9 +109,11 @@ class TestConv2dFusionOp(OpTest):
'data_format'
:
self
.
data_format
,
'exhaustive_search'
:
self
.
exhaustive_search
,
'activation'
:
self
.
activation
,
'split_channels'
:
self
.
channels
,
'padding_algorithm'
:
self
.
padding_algorithm
}
if
self
.
split_channels
is
not
None
:
self
.
attrs
[
'split_channels'
]
=
self
.
split_channels
self
.
outputs
=
{
'Output'
:
self
.
output
}
self
.
set_outputs
()
...
...
@@ -124,8 +125,6 @@ class TestConv2dFusionOp(OpTest):
if
self
.
has_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
else
:
pass
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
...
...
@@ -141,8 +140,7 @@ class TestConv2dFusionOp(OpTest):
def
init_group
(
self
):
self
.
groups
=
1
def
init_bias_residual
(
self
):
self
.
add_bias
=
True
def
init_residual
(
self
):
self
.
add_residual_data
=
True
def
init_activation
(
self
):
...
...
@@ -160,7 +158,7 @@ class TestConv2dFusionOp(OpTest):
class
TestWithoutResidual
(
TestConv2dFusionOp
):
def
init_
bias_
residual
(
self
):
def
init_residual
(
self
):
self
.
add_residual_data
=
False
...
...
@@ -209,7 +207,7 @@ class TestMultipleOutputs(TestConv2dFusionOp):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
126
,
f_c
,
3
,
3
]
self
.
channels
=
[
84
,
42
]
self
.
split_
channels
=
[
84
,
42
]
def
set_outputs
(
self
):
out1
=
self
.
output
[:,
0
:
84
,
:,
:]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录