conv_op.h 44.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
liym27 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20
#include <vector>
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
L
lvmengsi 已提交
23
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
33 34
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
35
constexpr int MaxKeyLength = 256;
36

武毅 已提交
37 38
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
39 40
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
41
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
42
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
L
liym27 已提交
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
C
chengduoZH 已提交
45 46 47 48 49
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
50 51
  return output_size;
}
L
liym27 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding_1, int padding_2, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1;
  PADDLE_ENFORCE_GT(output_size, 0,
                    "Due to the settings of padding(%d, %d), filter_size(%d), "
                    "dilation(%d) and "
                    "stride(%d), the output size is less than 0, please check "
                    "again. Input_size:%d",
                    padding_1, padding_2, filter_size, dilation, stride,
                    input_size);

  return output_size;
}
67 68 69 70

template <typename T = int>
inline void UpdatePaddingAndDilation(std::vector<T>* paddings,
                                     std::vector<T>* dilation,
L
liym27 已提交
71 72
                                     const std::string padding_algorithm,
                                     const framework::DDim data_dims,
73 74
                                     const std::vector<T>& strides,
                                     const std::vector<T>& ksize) {
L
liym27 已提交
75
  // set padding size == data_dims.size() * 2
76
  auto data_shape = framework::vectorize<T>(data_dims);
77 78
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
79
      T copy_pad = *(paddings->begin() + 2 * i);
L
liym27 已提交
80 81 82 83 84 85 86 87
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the input data size.");
  }

88
  // when padding_algorithm is "VALID" or "SAME"
L
liym27 已提交
89
  if (padding_algorithm == "SAME") {
90
    for (int i = 0; i < data_dims.size(); ++i) {
91 92
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
93 94
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
95 96
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
L
liym27 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;

      // dilation
      *(dilation->begin() + i) = 1;
    }

  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

111 112 113 114
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
115 116
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
117
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
118 119 120
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
121
  }
L
liym27 已提交
122 123 124 125 126
  if (paddings.size() != strides.size()) {
    for (size_t j = 0; j < paddings.size(); ++j) {
      padding_0 = padding_0 && (paddings[j] == 0);
    }
  }
C
chengduoZH 已提交
127
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
128
}
武毅 已提交
129

L
liym27 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename DeviceContext, typename T>
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
                                 const Tensor* input,
                                 Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[4];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    in_dims_vec[4] = input->dims()[3];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[3];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
template <typename DeviceContext, typename T>
inline void ResizeToChannelLast(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[4];
    in_dims_vec[4] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

L
liym27 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
template <typename DeviceContext, typename T>
inline void TransToChannelFirst(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 4, 1, 2, 3};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 3, 1, 2};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelLast(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 4, 1};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 1};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}
武毅 已提交
226 227 228 229
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
230 231 232 233
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
234 235
};

C
chengduoZH 已提交
236 237
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
251 252 253
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
254 255 256
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
257 258 259 260

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
261 262 263 264

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
武毅 已提交
265 266
};

C
chengduoZH 已提交
267
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
268 269 270
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
271

Q
qingqing01 已提交
272 273 274 275 276 277 278 279 280 281
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

class ConvOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

282 283 284
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
285 286
};

Q
QI JUN 已提交
287
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
288
class GemmConvKernel : public framework::OpKernel<T> {
289 290 291
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
292 293 294 295
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
296 297 298
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
299 300
    const int groups = context.Attr<int>("groups");
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
301
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
302
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto trans_in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(trans_in_dims, 2, trans_in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);
336

337 338
    auto& dev_ctx = context.template device_context<DeviceContext>();

L
liym27 已提交
339
    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
C
chengduoZH 已提交
340

L
liym27 已提交
341 342
    // filter_shape_vec:
    // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
343
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
L
liym27 已提交
344 345 346 347 348

    // output_shape_vec:
    // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_output.dims()));
349

H
hedaoyuan 已提交
350
    // use col_shape in the im2col calculation
L
liym27 已提交
351 352 353
    // col_shape_vec:
    // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w,
    // o_d,o_h, o_w}
C
chengduoZH 已提交
354
    size_t data_dim = filter_shape_vec.size() - 2;
L
liym27 已提交
355

C
chengduoZH 已提交
356
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
357
    col_shape_vec[0] = trans_in_dims[1] / groups;
C
chengduoZH 已提交
358 359 360 361
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
L
liym27 已提交
362

C
chengduoZH 已提交
363 364
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
365
    // use col_matrix_shape in the gemm calculation
L
liym27 已提交
366 367 368 369
    // size:
    // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h *
    // o_w)

C
chengduoZH 已提交
370
    framework::DDim col_matrix_shape =
L
liym27 已提交
371
        framework::flatten_to_2d(col_shape, data_dim);
C
chengduoZH 已提交
372

C
chengduoZH 已提交
373
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
374

H
hedaoyuan 已提交
375
    Tensor col;
H
hedaoyuan 已提交
376 377 378
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
379
    Tensor col_matrix;
C
chengduoZH 已提交
380
    if (is_expand) {
X
Xin Pan 已提交
381
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
382 383 384
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
385

L
liym27 已提交
386 387
    framework::DDim in_matrix_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
388

H
hedaoyuan 已提交
389 390
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
391 392
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
393
    framework::DDim output_matrix_shape = {
L
liym27 已提交
394 395 396
        transformed_output.dims()[1],
        transformed_output.numel() /
            (transformed_output.dims()[0] * transformed_output.dims()[1])};
C
chengduoZH 已提交
397 398

    // convolution operator: im2col(or vol2col) + gemm
L
liym27 已提交
399 400
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output.dims()[1]) / groups;
C
chengduoZH 已提交
401

Q
QI JUN 已提交
402 403
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
404

Y
Yu Yang 已提交
405
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
406
    for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
407 408 409 410
      Tensor in_batch =
          transformed_input.Slice(i, i + 1).Resize(in_matrix_shape);
      Tensor out_batch =
          transformed_output.Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
411

C
chengduoZH 已提交
412 413
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
414

C
chengduoZH 已提交
415
        if (!is_expand) {
C
chengduoZH 已提交
416 417 418
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
419
        } else if (data_dim == 2U) {
Q
QI JUN 已提交
420
          im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
421 422
                 std::vector<int>{paddings[0], paddings[2], paddings[1],
                                  paddings[3]},
C
chengduoZH 已提交
423
                 &col);
L
liym27 已提交
424

C
chengduoZH 已提交
425
        } else if (data_dim == 3U) {
Q
QI JUN 已提交
426
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
427
        }
C
chengduoZH 已提交
428 429 430 431

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
432 433
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
434
      }
435
    }
L
liym27 已提交
436 437 438 439
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
    }
440 441 442
  }
};

Q
QI JUN 已提交
443
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
444
class GemmConvGradKernel : public framework::OpKernel<T> {
445 446
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
447 448 449 450 451
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
452
    Tensor* filter_grad =
H
hedaoyuan 已提交
453
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
454 455 456 457
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
458

C
chengduoZH 已提交
459 460
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
461
    int groups = context.Attr<int>("groups");
L
liym27 已提交
462
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
H
hedaoyuan 已提交
463
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
464
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
465 466 467 468 469 470 471 472
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
H
hedaoyuan 已提交
473

L
liym27 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);
    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
H
hedaoyuan 已提交
500

501 502
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
503
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
504
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
505
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
506
    std::vector<int64_t> output_shape_vec(
L
liym27 已提交
507
        framework::vectorize(transformed_output_grad.dims()));
C
chengduoZH 已提交
508

C
chengduoZH 已提交
509 510 511
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
512 513
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
514
    col_shape_vec[0] = transformed_input.dims()[1] / groups;
C
chengduoZH 已提交
515 516 517 518
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
519
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
520 521

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
522 523 524 525
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
526
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
527

L
liym27 已提交
528 529
    framework::DDim input_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
530

C
chengduoZH 已提交
531 532
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
533 534 535
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
L
liym27 已提交
536 537 538
        transformed_output_grad.dims()[1],
        transformed_output_grad.numel() / (transformed_output_grad.dims()[0] *
                                           transformed_output_grad.dims()[1])};
C
chengduoZH 已提交
539

C
chengduoZH 已提交
540 541
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
L
liym27 已提交
542 543
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output_grad.dims()[1]) / groups;
C
chengduoZH 已提交
544

C
chengduoZH 已提交
545
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
546

C
chengduoZH 已提交
547 548 549 550
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
551
    Tensor col_matrix;
C
chengduoZH 已提交
552
    if (is_expand) {
X
Xin Pan 已提交
553
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
554 555 556
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
557

Q
QI JUN 已提交
558
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
559
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
560 561 562

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
563 564 565 566
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);
C
chengduoZH 已提交
567

L
liym27 已提交
568 569 570
      } else {
        transformed_input_grad = *input_grad;
      }
C
chengduoZH 已提交
571 572 573
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
L
liym27 已提交
574
        set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
C
chengduoZH 已提交
575
      }
Q
QI JUN 已提交
576 577
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
578

C
chengduoZH 已提交
579 580
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
581 582 583
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            transformed_input_grad.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
584 585 586 587 588 589 590 591 592 593
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
594 595
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
596
          }
C
chengduoZH 已提交
597 598
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
599

C
chengduoZH 已提交
600
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
601
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
602 603
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
604
                   &in_grad_slice);
C
chengduoZH 已提交
605
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
606
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
607
          }
C
chengduoZH 已提交
608 609
        }
      }
L
liym27 已提交
610 611 612 613
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
      }
C
chengduoZH 已提交
614 615 616 617 618 619
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
620 621 622
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
623 624
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
625 626
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
627 628 629 630 631
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
632

C
chengduoZH 已提交
633
          if (!is_expand) {
C
chengduoZH 已提交
634 635 636
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
637
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
638
            im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
639 640
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
641
                   &col);
L
liym27 已提交
642

C
chengduoZH 已提交
643
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
644
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
645
          }
C
chengduoZH 已提交
646 647 648 649

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
650 651
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
652 653 654 655 656
        }
      }
    }
  }
};
Z
zlx 已提交
657

L
lvmengsi 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
template <typename DeviceContext, typename T>
class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      "It must use CPUPlace.");
    const Tensor* X = ctx.Input<Tensor>("Input");
    const Tensor* dY = ctx.Input<Tensor>("DOutput");
    const Tensor* ddX = ctx.Input<Tensor>("DDInput");
    const Tensor* ddW_in = ctx.Input<Tensor>("DDFilter");

    Tensor* ddY = ctx.Output<Tensor>("DDOutput");
    Tensor* dW = ctx.Output<Tensor>("DFilter");
    Tensor* dX = ctx.Output<Tensor>("DInput");
    Tensor W = detail::Ref(ctx.Input<Tensor>("Filter"),
                           "Cannot find input Filter(%s) in scope)",
H
hong 已提交
675
                           ctx.InputNames("Filter")[0]);
L
lvmengsi 已提交
676
    if (!ddY && !dW && !dX) return;
L
liym27 已提交
677 678 679

    const int groups = ctx.Attr<int>("groups");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
L
lvmengsi 已提交
680 681
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
L
liym27 已提交
682 683 684 685 686 687 688 689 690
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_X(X->type());
    Tensor transformed_dY(dY->type());
L
lvmengsi 已提交
691
    Tensor transformed_ddX(X->type());
L
liym27 已提交
692 693 694 695 696 697 698 699

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);
      TransToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);

      ResizeToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);
      TransToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);

L
lvmengsi 已提交
700 701 702 703
      if (ddX) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
        TransToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
      }
L
liym27 已提交
704 705 706
    } else {
      transformed_X = *X;
      transformed_dY = *dY;
L
lvmengsi 已提交
707 708 709
      if (ddX) {
        transformed_ddX = *ddX;
      }
L
liym27 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    }

    // update padding and dilation
    auto in_dims = transformed_X.dims();
    auto filter_dims = W.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_X.dims()[0]);
L
lvmengsi 已提交
725
    std::vector<int64_t> filter_shape_vec(framework::vectorize(W.dims()));
L
liym27 已提交
726 727
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_dY.dims()));
L
lvmengsi 已提交
728 729 730 731

    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    // col_shape [in_channel/group, kh, kw, oh, ow]
L
liym27 已提交
732
    col_shape_vec[0] = transformed_X.dims()[1] / groups;
L
lvmengsi 已提交
733 734 735 736 737 738 739 740 741
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2];
    }
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
    // col_matrix_shape [in_channel/group * kh * kw, oh * ow]
    framework::DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, data_dim + 1);
    // input_shape [Cin, H, W]
L
liym27 已提交
742 743
    framework::DDim input_shape = framework::slice_ddim(
        transformed_X.dims(), 1, transformed_X.dims().size());
L
lvmengsi 已提交
744 745 746 747 748 749
    // filter_matrix_shape [Cout, Cin * kh * kw]
    framework::DDim filter_matrix_shape = {W.dims()[0],
                                           W.numel() / W.dims()[0]};

    W.Resize(filter_matrix_shape);
    framework::DDim output_matrix_shape = {
L
liym27 已提交
750 751 752 753 754
        transformed_dY.dims()[1],
        transformed_dY.numel() /
            (transformed_dY.dims()[0] * transformed_dY.dims()[1])};
    int in_step = static_cast<int>(transformed_X.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_dY.dims()[1]) / groups;
L
lvmengsi 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
    Tensor col;
    Tensor col_matrix;
    if (is_expand) {
      col = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }

    math::SetConstant<DeviceContext, T> set_zero;
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

    // dx convolution double grad:  gemm + col2im(col2vol)
    // dx = ddw * dy  ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
    // oH, oW)
    if (dX && ddW_in) {
      Tensor ddW;
      ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
      dX->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
775 776 777 778 779 780 781 782 783

      Tensor transformed_dX(dX->type());

      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, dX, &transformed_dX);

      } else {
        transformed_dX = *dX;
      }
L
lvmengsi 已提交
784 785 786
      // if is_expand is false, the operation of set_zero is unnecessary
      // because math::matmul will reset dx
      if (is_expand) {
L
liym27 已提交
787
        set_zero(dev_ctx, &transformed_dX, static_cast<T>(0));
L
lvmengsi 已提交
788 789 790 791 792
      }
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;

      for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
793 794 795
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
          Tensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col_matrix.ShareDataWith(dx_slice);
            col_matrix.Resize(col_matrix_shape);
          }
          blas.MatMul(ddw_slice, true, dy_slice, false, T(1.0), &col_matrix,
                      T(0.0));

          if (is_expand && data_dim == 2U) {
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
810 811
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
812 813 814 815 816 817
                   &dx_slice);
          } else if (is_expand && data_dim == 3U) {
            col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice);
          }
        }
      }
L
liym27 已提交
818 819 820
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_dX, dX);
      }
L
lvmengsi 已提交
821 822 823 824 825
    }

    // dw = ddx * dy  ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
    // oH, oW)
    // dw convolution double grad:  im2col(vol2col) + gemm
L
lvmengsi 已提交
826
    if (dW && ddX) {
L
lvmengsi 已提交
827 828 829 830 831 832 833
      dW->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dW, static_cast<T>(0));
      Tensor dW_arr = *dW;
      dW_arr.Resize(filter_matrix_shape);
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
834 835 836
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
837 838 839 840 841 842 843 844 845 846
        for (int g = 0; g < groups; ++g) {
          // im2col
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col.ShareDataWith(ddx_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
847 848
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
          }

          Tensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(dy_slice, false, col_matrix, true, T(1.0), &dw_slice,
                      T(1.0));
        }
      }
    }

    // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
    // w/ddw(Cout, Cin, kh, kw)
    // ddy convolution double grad: im2col(vol2col) + gemm
    if (ddY) {
      ddY->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
866 867 868 869 870 871 872 873 874

      Tensor transformed_ddY(ddY->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddY, &transformed_ddY);
      } else {
        transformed_ddY = *ddY;
      }

      set_zero(dev_ctx, &transformed_ddY, static_cast<T>(0));
L
lvmengsi 已提交
875 876 877
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
878 879
        Tensor ddy_batch =
            transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape);
L
lvmengsi 已提交
880
        for (int g = 0; g < groups; ++g) {
L
liym27 已提交
881
          // gemm
L
lvmengsi 已提交
882
          Tensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step);
L
liym27 已提交
883

L
lvmengsi 已提交
884
          if (ddX) {
L
liym27 已提交
885 886
            Tensor ddx_batch =
                transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
887 888 889 890 891 892 893
            Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
            if (!is_expand) {
              col.ShareDataWith(ddx_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
894 895
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
896 897 898 899
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
            }
L
lvmengsi 已提交
900 901 902
            Tensor w_slice = W.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(w_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(0.0));
L
lvmengsi 已提交
903
          }
L
lvmengsi 已提交
904 905

          if (ddW_in) {
L
liym27 已提交
906
            Tensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
907
            Tensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step);
L
lvmengsi 已提交
908

L
liym27 已提交
909 910
            Tensor ddW;
            ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
L
lvmengsi 已提交
911 912 913 914 915 916
            if (!is_expand) {
              col.ShareDataWith(x_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, x_slice, dilations, strides,
L
liym27 已提交
917 918
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
919 920 921 922 923 924 925 926 927 928 929 930
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col);
            }

            // gemm
            Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(1.0));
          }
        }
      }
L
liym27 已提交
931 932 933
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_ddY, ddY);
      }
L
lvmengsi 已提交
934 935 936 937
    }
  }
};

Z
zlx 已提交
938 939 940 941 942 943 944 945 946
template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
947
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
Z
zlx 已提交
948 949
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
950
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1] %
              input->dims()[input->dims().size() - 1],
          0, "The output channels must be a multiple of the input channels");
    } else {
      PADDLE_ENFORCE_EQ(
          output->dims()[1] % input->dims()[1], 0,
          "The output channels must be a multiple of the input channels");
    }
    // transform tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }

Z
zlx 已提交
1004
    auto& dev_ctx = context.template device_context<DeviceContext>();
1005 1006 1007

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
L
liym27 已提交
1008 1009
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
1010 1011
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
L
liym27 已提交
1012 1013 1014 1015 1016 1017
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
    }
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
1018
    }
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
1040
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
1050

L
liym27 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);

    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }
1084 1085 1086 1087 1088
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);

      } else {
        transformed_input_grad = *input_grad;
      }

      set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
1099 1100 1101 1102

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
L
liym27 已提交
1103 1104 1105
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
1106 1107 1108
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
L
liym27 已提交
1109 1110 1111 1112 1113 1114 1115
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
      }
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
1116
      }
1117 1118 1119 1120 1121
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
1122 1123 1124
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
L
liym27 已提交
1125 1126 1127
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1128 1129 1130
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
L
liym27 已提交
1131 1132 1133
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1134
      }
1135
    }
Z
zlx 已提交
1136 1137 1138
  }
};

1139 1140
}  // namespace operators
}  // namespace paddle