conv_op.h 17.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

武毅 已提交
31 32
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
33 34
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
35
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
36 37 38 39 40 41 42 43
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE(
      output_size > 0,
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
44 45
  return output_size;
}
46 47 48 49
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
50 51
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
52
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
53 54 55
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
56
  }
C
chengduoZH 已提交
57
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
58
}
武毅 已提交
59 60 61 62 63

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
64 65 66 67
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
68 69
};

C
chengduoZH 已提交
70 71
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
85 86 87
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
88 89 90
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
91 92 93 94

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
95 96
};

C
chengduoZH 已提交
97
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
98 99 100
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
101 102 103 104

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
105 106
};

Q
QI JUN 已提交
107
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
108
class GemmConvKernel : public framework::OpKernel<T> {
109 110 111
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
112 113 114 115
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
116 117 118
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
119
    int groups = context.Attr<int>("groups");
120 121
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
122
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
123

C
chengduoZH 已提交
124 125
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
126
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
127
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
128
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
129
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
130

H
hedaoyuan 已提交
131
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
132 133
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
134 135 136 137 138 139 140
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
141 142
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
143
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
144 145 146
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
147
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
150
    Tensor col;
H
hedaoyuan 已提交
151 152 153
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
154
    Tensor col_matrix;
C
chengduoZH 已提交
155
    if (is_expand) {
C
chengduoZH 已提交
156 157 158 159
      col.mutable_data<T>(col_shape, context.GetPlace());
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
160

C
chengduoZH 已提交
161 162 163
    framework::DDim input_shape = framework::slice_ddim(
        input->dims(), 1, static_cast<int>(input->dims().size()));

H
hedaoyuan 已提交
164 165
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
166 167
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
168 169 170 171 172 173 174 175
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
176 177
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
178

Q
QI JUN 已提交
179
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
180
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
181 182 183
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
184

C
chengduoZH 已提交
185 186
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
187

C
chengduoZH 已提交
188
        if (!is_expand) {
C
chengduoZH 已提交
189 190 191
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
192
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
193
          // im2col
Q
QI JUN 已提交
194
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
195 196 197
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
198
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
199
          // vol2col
Q
QI JUN 已提交
200
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
201
        }
C
chengduoZH 已提交
202 203 204 205

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
206 207
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
208
      }
209 210 211 212
    }
  }
};

Q
QI JUN 已提交
213
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
214
class GemmConvGradKernel : public framework::OpKernel<T> {
215 216
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
217 218 219 220 221
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
222
    Tensor* filter_grad =
H
hedaoyuan 已提交
223
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
224 225 226 227
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
228

C
chengduoZH 已提交
229 230
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
231
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
232 233
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
234
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
235

C
chengduoZH 已提交
236
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
237

C
chengduoZH 已提交
238
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
239
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
240
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
241 242
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
243

C
chengduoZH 已提交
244 245 246
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
247 248 249 250 251 252 253
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
254
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
255 256

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
257 258 259 260
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
261
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
262 263 264

    framework::DDim input_shape = framework::slice_ddim(
        input->dims(), 1, static_cast<int>(input->dims().size()));
C
chengduoZH 已提交
265

C
chengduoZH 已提交
266 267
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
268 269 270
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
271 272 273
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
274

C
chengduoZH 已提交
275 276 277 278
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
279

C
chengduoZH 已提交
280
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
281 282 283 284
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
285
    Tensor col_matrix;
C
chengduoZH 已提交
286
    if (is_expand) {
C
chengduoZH 已提交
287 288 289 290
      col.mutable_data<T>(col_shape, context.GetPlace());
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
291

Q
QI JUN 已提交
292 293
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
294
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
295 296 297 298

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
299 300 301
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
302
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
303
      }
Q
QI JUN 已提交
304 305
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
306

C
chengduoZH 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
321 322
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
323
          }
C
chengduoZH 已提交
324 325
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
326

C
chengduoZH 已提交
327
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
328
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
329 330 331
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
332
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
333
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
334
          }
C
chengduoZH 已提交
335 336 337 338 339 340 341 342
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
343 344 345
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
346 347 348 349 350 351 352 353 354
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
355

C
chengduoZH 已提交
356
          if (!is_expand) {
C
chengduoZH 已提交
357 358 359
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
360
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
361
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
362 363 364
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
365
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
366
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
367
          }
C
chengduoZH 已提交
368 369 370 371

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
372 373
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
374 375 376 377 378
        }
      }
    }
  }
};
Z
zlx 已提交
379 380 381 382 383 384 385 386 387 388

template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

X
xzl 已提交
389 390 391
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input->dims()[1], 0,
        "The output channels must be a multiple of the input channels");
Z
zlx 已提交
392 393 394 395 396 397 398
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;

    auto& dev_ctx = context.template device_context<DeviceContext>();
399 400
    depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                  output);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    math::DepthwiseConvInputGradFunctor<DeviceContext, T>
        depthwiseConvInputGrad;
    math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
        depthwiseConvFilterGrad;

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
      depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
435
                             paddings, dilations, input_grad);
436 437 438 439 440 441
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings,
442
                              dilations, filter_grad);
443
    }
Z
zlx 已提交
444 445 446
  }
};

447 448
}  // namespace operators
}  // namespace paddle