conv_op.h 18.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
30 31
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
32
constexpr int MaxKeyLength = 256;
33

武毅 已提交
34 35
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
36 37
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
38
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
39 40 41 42 43 44 45 46
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE(
      output_size > 0,
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
47 48
  return output_size;
}
49 50 51 52
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
53 54
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
55
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
56 57 58
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
59
  }
C
chengduoZH 已提交
60
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
61
}
武毅 已提交
62 63 64 65 66

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
67 68 69 70
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
71 72
};

C
chengduoZH 已提交
73 74
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
88 89 90
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
91 92 93
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
94 95 96 97

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
98 99
};

C
chengduoZH 已提交
100
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
101 102 103
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
104 105 106 107

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
108 109
};

Q
QI JUN 已提交
110
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
111
class GemmConvKernel : public framework::OpKernel<T> {
112 113 114
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
115 116 117 118
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
119 120 121
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
122
    int groups = context.Attr<int>("groups");
123 124
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
125
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
126

127 128
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
129 130
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
131
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
132
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
133
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
134
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
135

H
hedaoyuan 已提交
136
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
137 138
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
139 140 141 142 143 144 145
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
146 147
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
148
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
149 150 151
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
152
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
153

C
chengduoZH 已提交
154
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
155
    Tensor col;
H
hedaoyuan 已提交
156 157 158
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
159
    Tensor col_matrix;
C
chengduoZH 已提交
160
    if (is_expand) {
X
Xin Pan 已提交
161
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
162 163 164
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
165

166 167
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
168

H
hedaoyuan 已提交
169 170
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
171 172
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
173 174 175 176 177 178 179 180
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
181 182
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
183

Y
Yu Yang 已提交
184
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
185 186 187
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
188

C
chengduoZH 已提交
189 190
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
191

C
chengduoZH 已提交
192
        if (!is_expand) {
C
chengduoZH 已提交
193 194 195
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
196
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
197
          // im2col
Q
QI JUN 已提交
198
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
199 200 201
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
202
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
203
          // vol2col
Q
QI JUN 已提交
204
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
205
        }
C
chengduoZH 已提交
206 207 208 209

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
210 211
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
212
      }
213 214 215 216
    }
  }
};

Q
QI JUN 已提交
217
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
218
class GemmConvGradKernel : public framework::OpKernel<T> {
219 220
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
221 222 223 224 225
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
226
    Tensor* filter_grad =
H
hedaoyuan 已提交
227
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
228 229 230 231
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
232

C
chengduoZH 已提交
233 234
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
235
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
236 237
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
238
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
239

C
chengduoZH 已提交
240
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
241

242 243
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
244
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
245
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
246
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
247 248
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
249

C
chengduoZH 已提交
250 251 252
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
253 254 255 256 257 258 259
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
260
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
261 262

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
263 264 265 266
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
267
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
268

269 270
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
271

C
chengduoZH 已提交
272 273
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
274 275 276
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
277 278 279
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
280

C
chengduoZH 已提交
281 282 283 284
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
285

C
chengduoZH 已提交
286
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
287 288 289 290
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
291
    Tensor col_matrix;
C
chengduoZH 已提交
292
    if (is_expand) {
X
Xin Pan 已提交
293
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
294 295 296
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
297

Q
QI JUN 已提交
298
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
299
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
300 301 302 303

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
304 305 306
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
307
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
308
      }
Q
QI JUN 已提交
309 310
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
311

C
chengduoZH 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
326 327
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
328
          }
C
chengduoZH 已提交
329 330
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
331

C
chengduoZH 已提交
332
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
333
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
334 335 336
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
337
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
338
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
339
          }
C
chengduoZH 已提交
340 341 342 343 344 345 346 347
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
348 349 350
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
351 352 353 354 355 356 357 358 359
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
360

C
chengduoZH 已提交
361
          if (!is_expand) {
C
chengduoZH 已提交
362 363 364
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
365
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
366
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
367 368 369
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
370
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
371
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
372
          }
C
chengduoZH 已提交
373 374 375 376

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
377 378
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
379 380 381 382 383
        }
      }
    }
  }
};
Z
zlx 已提交
384 385 386 387 388 389 390 391 392 393

template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

X
xzl 已提交
394 395 396
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input->dims()[1], 0,
        "The output channels must be a multiple of the input channels");
Z
zlx 已提交
397 398 399
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
400
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
Z
zlx 已提交
401
    auto& dev_ctx = context.template device_context<DeviceContext>();
402 403 404 405 406 407 408 409 410 411

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
      depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                    output);
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
      depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                    output);
    }
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
433
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
434 435 436 437 438 439 440

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
441 442 443 444 445 446 447 448 449 450 451 452

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
        depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                               paddings, dilations, input_grad);
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
        depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                               paddings, dilations, input_grad);
      }
453 454 455 456 457
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
458 459 460 461 462 463 464 465 466 467 468
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
        depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides,
                                paddings, dilations, filter_grad);
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
        depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides,
                                paddings, dilations, filter_grad);
      }
469
    }
Z
zlx 已提交
470 471 472
  }
};

473 474
}  // namespace operators
}  // namespace paddle