Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b76343c3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b76343c3
编写于
9月 17, 2019
作者:
L
lvmengsi
提交者:
GitHub
9月 17, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cpu Conv double grad (#19672)
* cpu conv_grad_grad
上级
754fd57e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
399 addition
and
27 deletion
+399
-27
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+5
-0
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+52
-3
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+213
-0
python/paddle/fluid/tests/unittests/test_conv_nn_grad.py
python/paddle/fluid/tests/unittests/test_conv_nn_grad.py
+129
-0
python/paddle/fluid/tests/unittests/test_nn_grad.py
python/paddle/fluid/tests/unittests/test_nn_grad.py
+0
-24
未找到文件。
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
b76343c3
...
...
@@ -510,3 +510,8 @@ REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
REGISTER_OP_KERNEL
(
conv3d_grad
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNConvGradOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNConvGradOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
conv3d_grad_grad
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNConvDoubleGradOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNConvDoubleGradOpKernel
<
double
>
,
paddle
::
operators
::
CUDNNConvDoubleGradOpKernel
<
plat
::
float16
>
);
paddle/fluid/operators/conv_op.cc
浏览文件 @
b76343c3
...
...
@@ -565,6 +565,40 @@ class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
}
};
/*
* Inputs: I, W, dO, ddI, ddW
* Outputs: ddO, dW, dI
*/
class
Conv3DDoubleGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
// I, W, dO, ddI, ddW
op
->
SetInput
(
"Input"
,
Input
(
"Input"
));
op
->
SetInput
(
"Filter"
,
Input
(
"Filter"
));
op
->
SetInput
(
"DOutput"
,
Input
(
framework
::
GradVarName
(
"Output"
)));
op
->
SetInput
(
"DDInput"
,
OutputGrad
(
framework
::
GradVarName
(
"Input"
)));
op
->
SetInput
(
"DDFilter"
,
OutputGrad
(
framework
::
GradVarName
(
"Filter"
)));
auto
ddx
=
OutputGrad
(
framework
::
GradVarName
(
"Input"
));
auto
ddw
=
OutputGrad
(
framework
::
GradVarName
(
"Filter"
));
std
::
vector
<
std
::
string
>
empty_str
=
{};
op
->
SetOutput
(
"DDOutput"
,
ddx
.
empty
()
?
empty_str
:
InputGrad
(
framework
::
GradVarName
(
"Output"
)));
op
->
SetOutput
(
"DFilter"
,
ddx
.
empty
()
?
empty_str
:
InputGrad
(
"Filter"
));
op
->
SetOutput
(
"DInput"
,
ddw
.
empty
()
?
empty_str
:
InputGrad
(
"Input"
));
op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
void
ConvOpDoubleGrad
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
auto
x_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
w_dims
=
ctx
->
GetInputDim
(
"Filter"
);
...
...
@@ -592,8 +626,14 @@ framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
else
{
PADDLE_THROW
(
"Now ConvDoubleGrad only supports cuDNN."
);
}
#endif
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
customized_type_value
=
kConvMKLDNNFP32
;
}
#endif
auto
type
=
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
(),
...
...
@@ -637,7 +677,8 @@ REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
REGISTER_OPERATOR
(
conv3d
,
ops
::
ConvOp
,
ops
::
Conv3DOpMaker
,
ops
::
ConvOpInferVarType
,
ops
::
Conv3DGradMaker
);
REGISTER_OPERATOR
(
conv3d_grad
,
ops
::
ConvOpGrad
);
REGISTER_OPERATOR
(
conv3d_grad
,
ops
::
ConvOpGrad
,
ops
::
Conv3DDoubleGradMaker
);
REGISTER_OPERATOR
(
conv3d_grad_grad
,
ops
::
ConvOpDoubleGrad
);
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
...
...
@@ -658,6 +699,10 @@ REGISTER_OP_CPU_KERNEL(
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv2d_grad_grad
,
ops
::
GemmConvDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GemmConvDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv3d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
@@ -666,3 +711,7 @@ REGISTER_OP_CPU_KERNEL(
conv3d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv3d_grad_grad
,
ops
::
GemmConvDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GemmConvDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/conv_op.h
浏览文件 @
b76343c3
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
...
...
@@ -393,6 +394,218 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GemmConvDoubleGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
"It must use CPUPlace."
);
const
Tensor
*
X
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
dY
=
ctx
.
Input
<
Tensor
>
(
"DOutput"
);
const
Tensor
*
ddX
=
ctx
.
Input
<
Tensor
>
(
"DDInput"
);
const
Tensor
*
ddW_in
=
ctx
.
Input
<
Tensor
>
(
"DDFilter"
);
Tensor
*
ddY
=
ctx
.
Output
<
Tensor
>
(
"DDOutput"
);
Tensor
*
dW
=
ctx
.
Output
<
Tensor
>
(
"DFilter"
);
Tensor
*
dX
=
ctx
.
Output
<
Tensor
>
(
"DInput"
);
Tensor
W
=
detail
::
Ref
(
ctx
.
Input
<
Tensor
>
(
"Filter"
),
"Cannot find input Filter(%s) in scope)"
,
ctx
.
Inputs
(
"Filter"
)[
0
]);
if
(
!
ddY
&&
!
dW
&&
!
dX
)
return
;
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
int
batch_size
=
static_cast
<
int
>
(
X
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
W
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
dY
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
// col_shape [in_channel/group, kh, kw, oh, ow]
col_shape_vec
[
0
]
=
X
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
data_dim
+
1
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// col_matrix_shape [in_channel/group * kh * kw, oh * ow]
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
// input_shape [Cin, H, W]
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
X
->
dims
(),
1
,
X
->
dims
().
size
());
// filter_matrix_shape [Cout, Cin * kh * kw]
framework
::
DDim
filter_matrix_shape
=
{
W
.
dims
()[
0
],
W
.
numel
()
/
W
.
dims
()[
0
]};
W
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
dY
->
dims
()[
1
],
dY
->
numel
()
/
(
dY
->
dims
()[
0
]
*
dY
->
dims
()[
1
])};
int
in_step
=
static_cast
<
int
>
(
X
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
dY
->
dims
()[
1
])
/
groups
;
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
=
ctx
.
AllocateTmpTensor
<
T
,
DeviceContext
>
(
col_shape
,
dev_ctx
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
// dx convolution double grad: gemm + col2im(col2vol)
// dx = ddw * dy ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
// oH, oW)
if
(
dX
&&
ddW_in
)
{
Tensor
ddW
;
ddW
.
ShareDataWith
(
*
ddW_in
).
Resize
(
filter_matrix_shape
);
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// if is_expand is false, the operation of set_zero is unnecessary
// because math::matmul will reset dx
if
(
is_expand
)
{
set_zero
(
dev_ctx
,
dX
,
static_cast
<
T
>
(
0
));
}
math
::
Col2VolFunctor
<
DeviceContext
,
T
>
col2vol
;
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
col2im
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
dy_batch
=
dY
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
dx_batch
=
dX
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
// gemm
Tensor
dy_slice
=
dy_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
ddw_slice
=
ddW
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
dx_slice
=
dx_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col_matrix
.
ShareDataWith
(
dx_slice
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
blas
.
MatMul
(
ddw_slice
,
true
,
dy_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
if
(
is_expand
&&
data_dim
==
2U
)
{
col2im
(
dev_ctx
,
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
dx_slice
);
}
else
if
(
is_expand
&&
data_dim
==
3U
)
{
col2vol
(
dev_ctx
,
col
,
dilations
,
strides
,
paddings
,
&
dx_slice
);
}
}
}
}
// dw = ddx * dy ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
// oH, oW)
// dw convolution double grad: im2col(vol2col) + gemm
if
(
dW
)
{
dW
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
dW
,
static_cast
<
T
>
(
0
));
Tensor
dW_arr
=
*
dW
;
dW_arr
.
Resize
(
filter_matrix_shape
);
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
im2col
;
math
::
Vol2ColFunctor
<
DeviceContext
,
T
>
vol2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
dy_batch
=
dY
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
ddx_batch
=
ddX
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
g
=
0
;
g
<
groups
;
++
g
)
{
// im2col
Tensor
dy_slice
=
dy_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
ddx_slice
=
ddx_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
ddx_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
im2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
vol2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
Tensor
dw_slice
=
dW_arr
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
blas
.
MatMul
(
dy_slice
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
dw_slice
,
T
(
1.0
));
}
}
}
// ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
// w/ddw(Cout, Cin, kh, kw)
// ddy convolution double grad: im2col(vol2col) + gemm
if
(
ddY
)
{
ddY
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
ddY
,
static_cast
<
T
>
(
0
));
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
im2col
;
math
::
Vol2ColFunctor
<
DeviceContext
,
T
>
vol2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ddx_batch
=
ddX
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
x_batch
=
X
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
ddy_batch
=
ddY
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
++
g
)
{
Tensor
x_slice
=
x_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
ddx_slice
=
ddx_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
ddx_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
ddy_slice
=
ddy_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
w_slice
=
W
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
blas
.
MatMul
(
w_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
ddy_slice
,
T
(
0.0
));
if
(
ddW_in
)
{
Tensor
ddW
;
ddW
.
ShareDataWith
(
*
ddW_in
).
Resize
(
filter_matrix_shape
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
x_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
dev_ctx
,
x_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
dev_ctx
,
x_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
ddw_slice
=
ddW
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
blas
.
MatMul
(
ddw_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
ddy_slice
,
T
(
1.0
));
}
}
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
DepthwiseConvKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
python/paddle/fluid/tests/unittests/test_conv_nn_grad.py
0 → 100644
浏览文件 @
b76343c3
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
from
decorator_helper
import
prog_scope
class
TestConvDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
4
,
7
,
8
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
conv2d
(
x
,
4
,
1
,
bias_attr
=
False
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
w
=
fluid
.
default_main_program
().
global_block
().
all_parameters
()
w_arr
=
[]
for
p
in
w
:
w_arr
.
append
(
np
.
random
.
uniform
(
-
1
,
1
,
p
.
shape
).
astype
(
dtype
))
gradient_checker
.
double_grad_check
(
[
x
]
+
w
,
y
,
x_init
=
[
x_arr
]
+
w_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestConvDoubleGradCheckTest1
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
4
,
5
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
conv2d
(
x
,
4
,
1
,
padding
=
1
,
bias_attr
=
False
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
w
=
fluid
.
default_main_program
().
global_block
().
all_parameters
()
w_arr
=
[]
for
p
in
w
:
w_arr
.
append
(
np
.
random
.
uniform
(
-
1
,
1
,
p
.
shape
).
astype
(
dtype
))
gradient_checker
.
double_grad_check
(
[
x
]
+
w
,
y
,
x_init
=
[
x_arr
]
+
w_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestConv3DDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
4
,
3
,
4
,
2
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
conv3d
(
x
,
4
,
1
,
bias_attr
=
False
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
w
=
fluid
.
default_main_program
().
global_block
().
all_parameters
()
w_arr
=
[]
for
p
in
w
:
w_arr
.
append
(
np
.
random
.
uniform
(
-
1
,
1
,
p
.
shape
).
astype
(
dtype
))
gradient_checker
.
double_grad_check
(
[
x
]
+
w
,
y
,
x_init
=
[
x_arr
]
+
w_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestConv3DDoubleGradCheckTest1
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
4
,
5
,
3
,
2
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
conv3d
(
x
,
4
,
1
,
padding
=
1
,
bias_attr
=
False
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
w
=
fluid
.
default_main_program
().
global_block
().
all_parameters
()
w_arr
=
[]
for
p
in
w
:
w_arr
.
append
(
np
.
random
.
uniform
(
-
1
,
1
,
p
.
shape
).
astype
(
dtype
))
gradient_checker
.
double_grad_check
(
[
x
]
+
w
,
y
,
x_init
=
[
x_arr
]
+
w_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nn_grad.py
浏览文件 @
b76343c3
...
...
@@ -43,30 +43,6 @@ class TestMulGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestConvDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
4
,
14
,
16
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
conv2d
(
x
,
4
,
1
,
bias_attr
=
False
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
w
=
fluid
.
default_main_program
().
global_block
().
all_parameters
()
w_arr
=
[]
for
p
in
w
:
w_arr
.
append
(
np
.
random
.
uniform
(
-
1
,
1
,
p
.
shape
).
astype
(
dtype
))
gradient_checker
.
double_grad_check
(
[
x
]
+
w
,
y
,
x_init
=
[
x_arr
]
+
w_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestReduceMeanWithDimDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录