test_activation_op.py 110.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53
        self.check_eager = False
54

55
        np.random.seed(2049)
56 57 58 59 60
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
61 62

    def test_check_output(self):
63 64 65 66
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
67 68

    def test_check_grad(self):
69 70
        if self.dtype == np.float16:
            return
71 72 73 74
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
75

76
    def init_dtype(self):
77
        self.dtype = np.float64
78

79 80 81
    def init_kernel_type(self):
        pass

Q
qijun 已提交
82

R
ronnywang 已提交
83 84 85
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
86
        self.python_api = paddle.expm1
R
ronnywang 已提交
87 88 89 90 91 92 93 94 95 96
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
97 98 99 100
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
R
ronnywang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


151 152 153
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
154
            np_x = np.array([0.1])
155
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
156
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
157 158
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
159 160 161
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
162 163 164 165 166 167 168

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
169 170 171 172 173
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
174 175


C
chengduo 已提交
176
class TestSigmoid(TestActivation):
Q
qijun 已提交
177 178
    def setUp(self):
        self.op_type = "sigmoid"
179 180
        self.init_dtype()

181
        np.random.seed(1024)
182 183 184 185 186
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
187

188 189 190
    def init_dtype(self):
        self.dtype = np.float32

191
    def test_check_grad(self):
192 193 194 195
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
291
class TestLogSigmoid(TestActivation):
292 293
    def setUp(self):
        self.op_type = "logsigmoid"
294 295
        self.init_dtype()

296
        np.random.seed(2048)
297 298 299
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

300
        self.inputs = {'X': x}
301
        self.outputs = {'Out': out}
302 303

    def test_check_grad(self):
304 305
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
306
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
307 308


309
class TestLogSigmoidAPI(unittest.TestCase):
310
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
311
    def setUp(self):
312
        np.random.seed(1024)
313
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
314
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
315 316 317
            else paddle.CPUPlace()

    def test_static_api(self):
318
        paddle.enable_static()
319
        with paddle.static.program_guard(paddle.static.Program()):
320
            x = paddle.fluid.data('X', [11, 17])
321
            out1 = F.log_sigmoid(x)
322 323 324 325 326 327
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
328
            self.assertTrue(np.allclose(out_ref, r))
329 330 331 332

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
333
        out1 = F.log_sigmoid(x)
334 335 336 337
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
338
            self.assertTrue(np.allclose(out_ref, r.numpy()))
339 340
        paddle.enable_static()

341
    def test_fluid_api(self):
342
        paddle.enable_static()
343
        with paddle.static.program_guard(paddle.static.Program()):
344
            x = paddle.fluid.data('X', [11, 17])
345 346 347 348 349 350
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

351
    def test_errors(self):
352
        paddle.enable_static()
353 354
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
355
            self.assertRaises(TypeError, F.log_sigmoid, 1)
356
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
357 358
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
359
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
360
            # support the input dtype is float16
J
joejiong 已提交
361 362
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
363
            F.log_sigmoid(x_fp16)
364 365


366
class TestTanh(TestActivation, TestParameter):
367 368
    def setUp(self):
        self.op_type = "tanh"
369
        self.init_dtype()
370
        np.random.seed(1024)
371 372 373 374 375
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
376 377

    def test_check_grad(self):
378 379
        if self.dtype == np.float16:
            return
380
        self.check_grad(['X'], 'Out')
381

382 383 384 385 386 387
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

388

W
WangXi 已提交
389 390 391 392
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
393
        np.random.seed(1024)
W
WangXi 已提交
394
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
395
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
396
            else paddle.CPUPlace()
397 398 399 400
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
401 402

    def test_static_api(self):
403
        paddle.enable_static()
W
WangXi 已提交
404
        with paddle.static.program_guard(paddle.static.Program()):
405
            x = paddle.fluid.data('X', [10, 12], self.dtype)
406
            out1 = self.tanh(x)
W
WangXi 已提交
407 408 409 410 411 412 413 414 415 416
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
417
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
418 419 420 421 422 423 424 425 426 427
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
428
        paddle.enable_static()
W
WangXi 已提交
429 430 431 432 433 434 435 436 437
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
438
        paddle.enable_static()
W
WangXi 已提交
439 440
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
441
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
442
            # The input dtype must be float16, float32.
J
joejiong 已提交
443 444
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
445
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
446
            # support the input dtype is float16
J
joejiong 已提交
447 448
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
449 450 451 452 453 454 455
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
456 457


458
class TestAtan(TestActivation, TestParameter):
459 460 461 462
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

463
        np.random.seed(1024)
464 465 466 467 468 469 470 471 472
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
473
        self.check_grad(['X'], 'Out')
474

W
WuHaobo 已提交
475 476 477 478 479 480 481 482 483 484 485
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

486 487 488 489 490 491 492 493
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

494

495 496 497 498 499
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

500
        np.random.seed(1024)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

572
        np.random.seed(1024)
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


639 640 641 642 643 644
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
645 646
    def setUp(self):
        self.op_type = "tanh_shrink"
647 648
        self.init_dtype()

649
        np.random.seed(1024)
650 651
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
652

653
        self.inputs = {'X': x}
654
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
655 656

    def test_check_grad(self):
657 658
        if self.dtype == np.float16:
            return
659
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
660

661

662 663 664
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
665
        np.random.seed(1024)
666
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
667
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
668 669 670
            else paddle.CPUPlace()

    def test_static_api(self):
671
        paddle.enable_static()
672
        with paddle.static.program_guard(paddle.static.Program()):
673
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
695
        paddle.enable_static()
696 697 698 699 700 701 702 703 704
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
705
        paddle.enable_static()
706 707 708 709
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
710 711
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
712 713
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
714 715
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
716 717 718
            F.tanhshrink(x_fp16)


719 720 721 722 723 724
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
725
class TestHardShrink(TestActivation):
726 727
    def setUp(self):
        self.op_type = "hard_shrink"
728 729
        self.init_dtype()

730 731
        self.threshold = 0.5
        self.set_attrs()
732
        np.random.seed(1024)
Z
zhupengyang 已提交
733
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
734
        out = ref_hardshrink(x, self.threshold)
735

736
        self.attrs = {'threshold': self.threshold}
737
        self.inputs = {'X': x}
738
        self.outputs = {'Out': out}
739

740 741 742
    def set_attrs(self):
        pass

743
    def test_check_grad(self):
744 745
        if self.dtype == np.float16:
            return
746
        self.check_grad(['X'], 'Out')
747 748


749 750 751 752 753
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


754 755 756
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
757
        np.random.seed(1024)
758
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
759
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
760 761 762
            else paddle.CPUPlace()

    def test_static_api(self):
763
        paddle.enable_static()
764
        with paddle.static.program_guard(paddle.static.Program()):
765
            x = paddle.fluid.data('X', [10, 12])
766 767 768 769 770 771 772 773 774 775 776
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
777
        x = paddle.to_tensor(self.x_np)
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
794
        paddle.enable_static()
795 796 797 798 799 800 801 802
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

803
    def test_errors(self):
804
        paddle.enable_static()
805
        with paddle.static.program_guard(paddle.static.Program()):
806
            # The input type must be Variable.
807
            self.assertRaises(TypeError, F.hardshrink, 1)
808
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
809 810
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
811
            self.assertRaises(TypeError, F.hardshrink, x_int32)
812
            # support the input dtype is float16
J
joejiong 已提交
813 814
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
815
            F.hardshrink(x_fp16)
816 817


818 819 820 821 822 823 824 825 826 827 828
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
829
        np.random.seed(1024)
830
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
831
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
832 833 834
            else paddle.CPUPlace()

    def test_static_api(self):
835
        paddle.enable_static()
836
        with paddle.static.program_guard(paddle.static.Program()):
837
            x = paddle.fluid.data('X', [10, 12])
838 839 840 841 842 843 844 845 846 847 848
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
849
        x = paddle.to_tensor(self.x_np)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
866
        paddle.enable_static()
867 868 869 870
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
871 872
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
873 874
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
875 876
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
877 878 879
            F.hardtanh(x_fp16)


880 881 882 883 884 885 886 887
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
888 889
    def setUp(self):
        self.op_type = "softshrink"
890 891
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
892 893
        self.init_dtype()

894
        threshold = 0.8
895

896
        np.random.seed(1023)
897 898 899 900
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
901
        self.outputs = {'Out': out}
902 903

    def test_check_grad(self):
904 905
        if self.dtype == np.float16:
            return
906
        self.check_grad(['X'], 'Out', check_eager=True)
907

908

909 910 911 912
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
913
        np.random.seed(1024)
914
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
915
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
916 917 918
            else paddle.CPUPlace()

    def test_static_api(self):
919
        paddle.enable_static()
920
        with paddle.static.program_guard(paddle.static.Program()):
921
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
943
        paddle.enable_static()
944 945 946 947 948 949 950 951
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

952
    def test_errors(self):
953
        paddle.enable_static()
954
        with paddle.static.program_guard(paddle.static.Program()):
955
            # The input type must be Variable.
956
            self.assertRaises(TypeError, F.softshrink, 1)
957
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
958 959
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
960
            self.assertRaises(TypeError, F.softshrink, x_int32)
961
            # The threshold must be no less than zero
J
joejiong 已提交
962 963
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
964
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
965
            # support the input dtype is float16
J
joejiong 已提交
966 967
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
968
            F.softshrink(x_fp16)
969 970


971
class TestSqrt(TestActivation, TestParameter):
972 973
    def setUp(self):
        self.op_type = "sqrt"
974
        self.python_api = paddle.sqrt
975 976
        self.init_dtype()

977
        np.random.seed(1023)
978 979 980 981 982
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
983 984

    def test_check_grad(self):
985 986
        if self.dtype == np.float16:
            return
987 988 989 990
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
991

992

993 994 995 996 997
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
998
        self.python_api = paddle.sqrt
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1015
        self.check_output_with_place(place, check_eager=True)
1016 1017 1018

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1019
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1020 1021


Z
zhoukunsheng 已提交
1022 1023 1024 1025 1026
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

1027
        np.random.seed(1024)
Z
zhupengyang 已提交
1028
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
1040
class TestAbs(TestActivation):
1041 1042
    def setUp(self):
        self.op_type = "abs"
1043 1044
        self.init_dtype()

1045
        np.random.seed(1024)
1046
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1047
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1048
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1049
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1050 1051
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1052 1053 1054 1055
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1056 1057

    def test_check_grad(self):
1058 1059
        if self.dtype == np.float16:
            return
1060
        self.check_grad(['X'], 'Out', check_eager=False)
1061

1062

C
chengduo 已提交
1063
class TestCeil(TestActivation):
D
dzhwinter 已提交
1064 1065
    def setUp(self):
        self.op_type = "ceil"
1066 1067
        self.check_eager = True
        self.python_api = paddle.ceil
1068 1069
        self.init_dtype()

1070
        np.random.seed(1024)
Z
zhupengyang 已提交
1071
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1072 1073 1074 1075
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1076

D
dzhwinter 已提交
1077
    # The same reason with TestFloor
C
chengduo 已提交
1078
    def test_check_grad(self):
1079 1080 1081
        pass


C
chengduo 已提交
1082
class TestFloor(TestActivation):
D
dzhwinter 已提交
1083 1084
    def setUp(self):
        self.op_type = "floor"
1085 1086
        self.check_eager = True
        self.python_api = paddle.floor
1087 1088
        self.init_dtype()

1089
        np.random.seed(1024)
Z
zhupengyang 已提交
1090
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1091 1092 1093 1094
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1095

D
dzhwinter 已提交
1096
    # the gradient on floor, ceil, round is undefined.
1097
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1098 1099
    # The same reason with TestFloor
    def test_check_grad(self):
1100 1101 1102
        pass


C
chengduo 已提交
1103
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1104 1105
    def setUp(self):
        self.op_type = "cos"
1106 1107
        self.init_dtype()

1108
        np.random.seed(1024)
Z
zhupengyang 已提交
1109
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1110 1111 1112 1113
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1114 1115

    def test_check_grad(self):
1116 1117
        if self.dtype == np.float16:
            return
1118
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1119

1120

J
joejiong 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1172 1173 1174 1175 1176
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1177
        np.random.seed(1024)
Z
zhupengyang 已提交
1178
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1179 1180 1181 1182 1183 1184 1185 1186
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1187
        self.check_grad(['X'], 'Out')
1188 1189


1190
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1191 1192
    def setUp(self):
        self.op_type = "sin"
1193 1194
        self.init_dtype()

1195
        np.random.seed(1024)
Z
zhupengyang 已提交
1196
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1197 1198 1199 1200
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1201 1202

    def test_check_grad(self):
1203 1204
        if self.dtype == np.float16:
            return
1205
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1206 1207


1208 1209 1210 1211 1212
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1213
        np.random.seed(2048)
Z
zhupengyang 已提交
1214
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1215 1216 1217 1218 1219 1220 1221 1222
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1223
        self.check_grad(['X'], 'Out')
1224 1225


X
xiaoting 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1280
class TestRound(TestActivation):
D
dzhwinter 已提交
1281 1282
    def setUp(self):
        self.op_type = "round"
1283 1284
        self.check_eager = True
        self.python_api = paddle.round
1285 1286
        self.init_dtype()

1287
        np.random.seed(1024)
Z
zhupengyang 已提交
1288
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1289 1290 1291 1292
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1293

C
chengduo 已提交
1294
    def test_check_grad(self):
1295 1296 1297
        pass


C
chengduo 已提交
1298
class TestRelu(TestActivation):
1299
    def setUp(self):
Q
qijun 已提交
1300
        self.op_type = "relu"
K
Kexin Zhao 已提交
1301 1302
        self.init_dtype()

1303
        np.random.seed(1024)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1316 1317

        self.outputs = {'Out': out}
1318 1319

    def test_check_grad(self):
K
Kexin Zhao 已提交
1320 1321
        if self.dtype == np.float16:
            return
1322
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1323 1324


1325 1326 1327
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1328
        np.random.seed(1024)
1329
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1330
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1331
            else paddle.CPUPlace()
1332 1333 1334 1335
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1336 1337

    def test_static_api(self):
1338
        paddle.enable_static()
1339
        with paddle.static.program_guard(paddle.static.Program()):
1340
            x = paddle.fluid.data('X', [10, 12])
1341
            out1 = self.relu(x)
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1354 1355
        out1 = m(x)
        out2 = self.relu(x)
1356 1357 1358 1359 1360
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1361
    def test_errors(self):
1362
        paddle.enable_static()
1363
        with paddle.static.program_guard(paddle.static.Program()):
1364
            # The input type must be Variable.
1365
            self.assertRaises(TypeError, self.relu, 1)
1366
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1367 1368
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1369
            self.assertRaises(TypeError, self.relu, x_int32)
1370
            # support the input dtype is float16
J
joejiong 已提交
1371 1372
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1373 1374 1375 1376 1377 1378 1379
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1380 1381


1382 1383 1384 1385 1386 1387
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1388
class TestLeakyRelu(TestActivation):
1389 1390 1391
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1392 1393 1394
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1395
        alpha = self.get_alpha()
A
Adam 已提交
1396

1397
        np.random.seed(1024)
A
Adam 已提交
1398 1399
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1400 1401
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1402

1403
        self.inputs = {'X': x}
A
Adam 已提交
1404
        self.outputs = {'Out': out}
1405
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1406 1407 1408 1409

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1410
        self.check_grad(['X'], 'Out')
1411 1412


1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1432
        np.random.seed(1024)
1433
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1434
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1435 1436 1437
            else paddle.CPUPlace()

    def test_static_api(self):
1438
        paddle.enable_static()
1439
        with paddle.static.program_guard(paddle.static.Program()):
1440
            x = paddle.fluid.data('X', [10, 12])
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1452
        x = paddle.to_tensor(self.x_np)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1469
        paddle.enable_static()
1470 1471 1472 1473 1474 1475 1476 1477
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1478
    def test_errors(self):
1479
        paddle.enable_static()
1480
        with paddle.static.program_guard(paddle.static.Program()):
1481
            # The input type must be Variable.
1482
            self.assertRaises(TypeError, F.leaky_relu, 1)
1483
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1484 1485
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1486 1487
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1488 1489
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1490
            F.leaky_relu(x_fp16)
1491 1492


1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1503 1504 1505
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1506
        approximate = True
1507
        np.random.seed(1024)
1508 1509
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1510

1511
        self.inputs = {'X': x}
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1526
        np.random.seed(2048)
C
Clementine 已提交
1527
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1528
        out = gelu(x, approximate)
C
Clementine 已提交
1529

1530
        self.inputs = {'X': x}
C
Clementine 已提交
1531
        self.outputs = {'Out': out}
1532
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1533 1534 1535 1536

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1537
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1538 1539


1540 1541 1542
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1543
        np.random.seed(1024)
1544
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1545
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1546 1547 1548
            else paddle.CPUPlace()

    def test_static_api(self):
1549
        paddle.enable_static()
1550
        with paddle.static.program_guard(paddle.static.Program()):
1551
            x = paddle.fluid.data('X', [11, 17])
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1580
        paddle.enable_static()
1581 1582 1583 1584
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1585 1586
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1587 1588
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1589 1590
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1591 1592 1593
            F.gelu(x_fp16)


C
chengduo 已提交
1594
class TestBRelu(TestActivation):
1595 1596
    def setUp(self):
        self.op_type = "brelu"
1597 1598
        self.init_dtype()

1599
        np.random.seed(1024)
Z
zhupengyang 已提交
1600
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1601 1602
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1603 1604
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1605
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1606 1607 1608
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1609 1610 1611

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1612
        self.outputs = {'Out': t}
1613 1614

    def test_check_grad(self):
1615 1616
        if self.dtype == np.float16:
            return
1617
        self.check_grad(['X'], 'Out')
1618

1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1631
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1661 1662 1663 1664 1665 1666 1667
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1668
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1669
    def setUp(self):
1670
        self.op_type = "relu6"
1671 1672
        self.init_dtype()

1673
        np.random.seed(1024)
Z
zhupengyang 已提交
1674
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1675
        x[np.abs(x) < 0.005] = 0.02
1676
        out = ref_relu6(x)
1677

1678 1679
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1680
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1681

1682 1683 1684
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1685
        self.check_grad(['X'], 'Out')
1686 1687


1688 1689 1690
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1691
        np.random.seed(1024)
1692 1693
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1694
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1695 1696 1697
            else paddle.CPUPlace()

    def test_static_api(self):
1698
        paddle.enable_static()
1699
        with paddle.static.program_guard(paddle.static.Program()):
1700
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1722
        paddle.enable_static()
1723 1724 1725 1726 1727 1728 1729 1730
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1731
    def test_errors(self):
1732
        paddle.enable_static()
1733
        with paddle.static.program_guard(paddle.static.Program()):
1734
            # The input type must be Variable.
1735
            self.assertRaises(TypeError, F.relu6, 1)
1736
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1737 1738
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1739
            self.assertRaises(TypeError, F.relu6, x_int32)
1740
            # support the input dtype is float16
J
joejiong 已提交
1741 1742
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1743
            F.relu6(x_fp16)
1744 1745


1746 1747 1748 1749 1750
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1751 1752 1753 1754 1755
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1756 1757
        skip_check_grad_ci(reason="not implemented yet")

1758
        np.random.seed(1024)
Z
zhupengyang 已提交
1759
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1760 1761 1762 1763 1764 1765
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1766
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1767

1768
        self.inputs = {'X': x}
H
huangjun12 已提交
1769 1770 1771 1772 1773 1774
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1775 1776

        return  # not implemented yet
1777
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1778 1779


1780 1781 1782 1783
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1784
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1785 1786 1787 1788
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1789
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1808
        paddle.enable_static()
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1827
            # The input type must be Variable.
1828
            self.assertRaises(TypeError, F.hardswish, 1)
1829
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1830 1831
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1832
            self.assertRaises(TypeError, F.hardswish, x_int32)
1833
            # support the input dtype is float16
J
joejiong 已提交
1834 1835
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1836
            F.hardswish(x_fp16)
1837 1838


C
chengduo 已提交
1839
class TestSoftRelu(TestActivation):
1840 1841
    def setUp(self):
        self.op_type = "soft_relu"
1842 1843
        self.init_dtype()

1844
        np.random.seed(4096)
1845
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1846
        threshold = 2.0
Q
qijun 已提交
1847 1848
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1849
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1850 1851 1852
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1853 1854 1855 1856 1857
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1858 1859

    def test_check_grad(self):
1860 1861
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1862
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1863

1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1878
def elu(x, alpha):
Z
zhupengyang 已提交
1879
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1880 1881 1882
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1883
class TestELU(TestActivation):
1884 1885
    def setUp(self):
        self.op_type = "elu"
1886 1887
        self.init_dtype()

1888
        np.random.seed(1024)
Z
zhupengyang 已提交
1889
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1890
        alpha = self.get_alpha()
1891
        out = elu(x, alpha)
1892 1893 1894 1895
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1896
        self.outputs = {'Out': out}
1897 1898

    def test_check_grad(self):
1899 1900
        if self.dtype == np.float16:
            return
1901
        self.check_grad(['X'], 'Out')
1902

Z
zhupengyang 已提交
1903 1904 1905 1906 1907 1908 1909 1910
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1911

1912 1913 1914
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1915
        np.random.seed(1024)
1916
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1917
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1918
            else paddle.CPUPlace()
1919 1920 1921 1922
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1923 1924

    def test_static_api(self):
1925
        paddle.enable_static()
1926
        with paddle.static.program_guard(paddle.static.Program()):
1927
            x = paddle.fluid.data('X', [10, 12])
1928
            out1 = self.elu(x)
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1940 1941
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1942 1943 1944 1945 1946 1947
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1948 1949
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1950 1951 1952 1953 1954 1955 1956
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1957
    def test_errors(self):
1958
        paddle.enable_static()
1959 1960
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1961
            self.assertRaises(TypeError, self.elu, 1)
1962
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1963 1964
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1965
            self.assertRaises(TypeError, self.elu, x_int32)
1966
            # support the input dtype is float16
J
joejiong 已提交
1967 1968
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1969 1970 1971
            self.elu(x_fp16)


Z
zhupengyang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2072
class TestReciprocal(TestActivation):
Q
qijun 已提交
2073 2074
    def setUp(self):
        self.op_type = "reciprocal"
2075
        self.python_api = paddle.reciprocal
2076 2077
        self.init_dtype()

2078
        np.random.seed(1024)
2079 2080 2081 2082 2083
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2084 2085

    def test_check_grad(self):
2086 2087
        if self.dtype == np.float16:
            return
2088 2089 2090 2091
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2092 2093


C
chengduo 已提交
2094
class TestLog(TestActivation):
Q
qijun 已提交
2095 2096
    def setUp(self):
        self.op_type = "log"
2097 2098
        self.check_eager = True
        self.python_api = paddle.log
2099 2100
        self.init_dtype()

2101
        np.random.seed(1024)
2102 2103 2104 2105 2106
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2107 2108

    def test_check_grad(self):
2109 2110
        if self.dtype == np.float16:
            return
2111
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2122

J
joejiong 已提交
2123 2124 2125
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
2126 2127
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2139
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2174 2175 2176
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
2177 2178
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2190
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2225 2226 2227
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
2228 2229
        self.check_eager = True
        self.python_api = paddle.log1p
2230 2231
        self.init_dtype()

2232
        np.random.seed(1024)
2233 2234 2235 2236 2237 2238 2239 2240 2241
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2242
        self.check_grad(['X'], 'Out', check_eager=True)
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2256 2257 2258
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2259
        expected_res = np.log1p(input_x)
2260
        self.assertTrue(np.allclose(res1, expected_res))
2261 2262 2263 2264 2265 2266 2267 2268

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2269
        self.assertTrue(np.allclose(np_z, z_expected))
2270 2271


C
chengduo 已提交
2272
class TestSquare(TestActivation):
Q
qijun 已提交
2273 2274
    def setUp(self):
        self.op_type = "square"
2275
        self.python_api = paddle.square
2276 2277
        self.init_dtype()

2278
        np.random.seed(1024)
2279 2280 2281 2282 2283
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2284 2285

    def test_check_grad(self):
2286 2287
        if self.dtype == np.float16:
            return
2288 2289 2290 2291 2292
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2293

2294

2295 2296 2297 2298 2299
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2300
        self.python_api = paddle.square
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2317
        self.check_output_with_place(place, check_eager=True)
2318 2319 2320

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2321 2322
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2323 2324


C
chengduo 已提交
2325
class TestPow(TestActivation):
2326 2327
    def setUp(self):
        self.op_type = "pow"
2328
        self.python_api = paddle.pow
2329
        self.check_eager = True
2330 2331
        self.init_dtype()

2332
        np.random.seed(1024)
2333 2334 2335 2336
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2337
        self.attrs = {'factor': 3.0}
2338
        self.outputs = {'Out': out}
2339

2340 2341 2342
    def test_check_output(self):
        self.check_output(check_eager=self.check_eager)

2343
    def test_check_grad(self):
2344 2345
        if self.dtype == np.float16:
            return
2346
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2347

2348

2349 2350 2351
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
2352 2353
        self.check_eager = False
        self.python_api = paddle.pow
2354 2355
        self.init_dtype()

2356
        np.random.seed(1024)
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2369
        self.check_output(check_eager=self.check_eager)
2370 2371 2372 2373

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2374
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2375 2376 2377 2378 2379

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2380 2381 2382 2383 2384
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2385 2386 2387 2388 2389

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2390 2391 2392
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2393 2394

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2395
        res_1, res_2, res, res_6 = exe.run(
2396 2397
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2398
            fetch_list=[out_1, out_2, res, out_6])
2399

2400 2401 2402
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2403

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2427

2428 2429 2430 2431 2432
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2433
class TestSTanh(TestActivation):
2434 2435 2436 2437 2438 2439
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2440 2441
    def setUp(self):
        self.op_type = "stanh"
2442
        self.init_dtype()
2443 2444
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2445

2446
        np.random.seed(1024)
2447
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2448 2449
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2450

2451
        self.inputs = {'X': x}
2452
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2453
        self.outputs = {'Out': out}
2454

Q
qijun 已提交
2455
    def test_check_grad(self):
2456 2457
        if self.dtype == np.float16:
            return
2458
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2459

2460

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2517
    def test_errors(self):
2518 2519
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2520
            # The input type must be Variable.
2521
            self.assertRaises(TypeError, paddle.stanh, 1)
2522
            # The input dtype must be float16, float32, float64.
2523 2524 2525
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2526
            # support the input dtype is float16
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2540 2541


2542 2543 2544 2545 2546 2547 2548
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2549
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2550 2551
    def setUp(self):
        self.op_type = "softplus"
2552 2553
        self.init_dtype()

2554 2555
        beta = 2
        threshold = 15
2556

2557
        np.random.seed(1024)
2558 2559 2560 2561
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2562
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2563 2564

    def test_check_grad(self):
2565 2566
        if self.dtype == np.float16:
            return
2567
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2568

2569

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2599 2600 2601 2602 2603
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2604
        np.random.seed(1024)
2605
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2606
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2607 2608 2609
            else paddle.CPUPlace()

    def test_static_api(self):
2610
        paddle.enable_static()
2611
        with paddle.static.program_guard(paddle.static.Program()):
2612
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2634
        paddle.enable_static()
2635 2636 2637 2638 2639 2640 2641 2642 2643
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2644
        paddle.enable_static()
2645 2646 2647 2648
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2649 2650
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2651 2652
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2653 2654
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2655 2656 2657 2658 2659 2660 2661 2662
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2663
class TestSoftsign(TestActivation):
2664 2665
    def setUp(self):
        self.op_type = "softsign"
2666 2667
        self.init_dtype()

2668
        np.random.seed(1024)
2669 2670 2671
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2672
        self.outputs = {'Out': out}
2673 2674

    def test_check_grad(self):
2675 2676
        if self.dtype == np.float16:
            return
2677
        self.check_grad(['X'], 'Out')
2678 2679


2680 2681 2682
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2683
        np.random.seed(1024)
2684
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2685
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2686 2687 2688
            else paddle.CPUPlace()

    def test_static_api(self):
2689
        paddle.enable_static()
2690
        with paddle.static.program_guard(paddle.static.Program()):
2691
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2713
        paddle.enable_static()
2714 2715 2716 2717 2718 2719 2720 2721 2722
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2723
        paddle.enable_static()
2724 2725 2726 2727
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2728 2729
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2730 2731
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2732 2733
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2734 2735 2736
            F.softsign(x_fp16)


2737 2738 2739 2740 2741
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2742
class TestThresholdedRelu(TestActivation):
2743 2744
    def setUp(self):
        self.op_type = "thresholded_relu"
2745 2746
        self.init_dtype()

2747
        threshold = 15
2748

2749 2750 2751 2752 2753 2754
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2755
        self.outputs = {'Out': out}
2756 2757

    def test_check_grad(self):
2758 2759
        if self.dtype == np.float16:
            return
2760
        self.check_grad(['X'], 'Out')
2761 2762


2763 2764 2765 2766 2767 2768 2769
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2770
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2771 2772 2773 2774 2775
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2776
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2807
    def test_errors(self):
2808 2809
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2810
            # The input type must be Variable.
2811
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2812
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2813 2814
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2815
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2816
            # support the input dtype is float16
J
joejiong 已提交
2817 2818
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2819
            F.thresholded_relu(x_fp16)
2820 2821


2822 2823 2824 2825
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2826
class TestHardSigmoid(TestActivation):
2827 2828
    def setUp(self):
        self.op_type = "hard_sigmoid"
2829 2830 2831 2832
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2833

2834 2835 2836
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2837

2838
        # Same reason as TestAbs
2839 2840 2841
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2842

2843
        out = ref_hardsigmoid(x, self.slope, self.offset)
2844

2845 2846
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2847
        self.outputs = {'Out': out}
2848

2849 2850
    def set_attrs(self):
        pass
2851

2852

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2868
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2869 2870 2871 2872
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2873
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2892
        paddle.enable_static()
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2911
            # The input type must be Variable.
2912
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2913
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2914 2915
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2916
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2917
            # support the input dtype is float16
J
joejiong 已提交
2918 2919
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2920
            F.hardsigmoid(x_fp16)
2921 2922


2923 2924 2925 2926 2927
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2928
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2929 2930
    def setUp(self):
        self.op_type = "swish"
2931 2932
        self.init_dtype()

2933
        np.random.seed(1024)
2934 2935 2936
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2937
        self.attrs = {'beta': 1.0}
2938
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2939 2940

    def test_check_grad(self):
2941 2942
        if self.dtype == np.float16:
            return
2943 2944
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2945

2946 2947 2948 2949 2950
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2951
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2952 2953 2954 2955 2956
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2957
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2987

2988
    def test_errors(self):
2989 2990
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2991
            # The input type must be Variable.
2992
            self.assertRaises(TypeError, F.swish, 1)
2993
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2994 2995
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2996
            self.assertRaises(TypeError, F.swish, x_int32)
2997
            # support the input dtype is float16
J
joejiong 已提交
2998 2999
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
3000
            F.swish(x_fp16)
3001 3002


3003 3004 3005 3006 3007 3008 3009 3010 3011
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
3012
        self.python_api = paddle.fluid.layers.nn.mish
3013 3014 3015 3016 3017 3018 3019 3020
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

3021 3022 3023
    def test_check_output(self):
        self.check_output(check_eager=True)

3024 3025 3026
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
3027
        self.check_grad(['X'], 'Out', check_eager=True)
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3118
create_test_error_class('tan')
X
xiaoting 已提交
3119 3120 3121
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3122 3123


3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3143 3144 3145 3146 3147
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3148
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3149 3150 3151 3152
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3153

C
chengduo 已提交
3154
        def test_check_output(self):
3155
            place = core.CUDAPlace(0)
C
chengduo 已提交
3156 3157 3158
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3159

C
chengduo 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3173
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3174
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3175
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3176 3177
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3178
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3179
create_test_act_fp16_class(TestHardShrink)
3180
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3181 3182 3183 3184 3185
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3186
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3187
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3188
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3189
create_test_act_fp16_class(TestSin)
3190
create_test_act_fp16_class(TestSinh)
3191 3192
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3193 3194 3195
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3196 3197
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3198
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3199 3200
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3201
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3202
create_test_act_fp16_class(TestELU)
3203
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3204 3205
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3206 3207 3208 3209
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3210
create_test_act_fp16_class(TestLog10, atol=5e-2)
3211
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3212 3213
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3214
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3215 3216 3217 3218 3219
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3220
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3221
create_test_act_fp16_class(TestHardSwish)
3222
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3251 3252
if __name__ == "__main__":
    unittest.main()