test_activation_op.py 109.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53
        self.check_eager = False
54

55
        np.random.seed(2049)
56 57 58 59 60
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
61 62

    def test_check_output(self):
63 64 65 66
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
67 68

    def test_check_grad(self):
69 70
        if self.dtype == np.float16:
            return
71 72 73 74
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
75

76
    def init_dtype(self):
77
        self.dtype = np.float64
78

79 80 81
    def init_kernel_type(self):
        pass

Q
qijun 已提交
82

R
ronnywang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


147 148 149
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
150
            np_x = np.array([0.1])
151
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
152
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
153 154
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
155 156 157
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
158 159 160 161 162 163 164

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
165 166 167 168 169
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
170 171


C
chengduo 已提交
172
class TestSigmoid(TestActivation):
Q
qijun 已提交
173 174
    def setUp(self):
        self.op_type = "sigmoid"
175 176
        self.init_dtype()

177
        np.random.seed(1024)
178 179 180 181 182
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
183

184 185 186
    def init_dtype(self):
        self.dtype = np.float32

187
    def test_check_grad(self):
188 189 190 191
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
287
class TestLogSigmoid(TestActivation):
288 289
    def setUp(self):
        self.op_type = "logsigmoid"
290 291
        self.init_dtype()

292
        np.random.seed(2048)
293 294 295
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

296
        self.inputs = {'X': x}
297
        self.outputs = {'Out': out}
298 299

    def test_check_grad(self):
300 301
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
302
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
303 304


305
class TestLogSigmoidAPI(unittest.TestCase):
306
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
307
    def setUp(self):
308
        np.random.seed(1024)
309
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
310
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
311 312 313
            else paddle.CPUPlace()

    def test_static_api(self):
314
        paddle.enable_static()
315
        with paddle.static.program_guard(paddle.static.Program()):
316
            x = paddle.fluid.data('X', [11, 17])
317
            out1 = F.log_sigmoid(x)
318 319 320 321 322 323
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
324
            self.assertTrue(np.allclose(out_ref, r))
325 326 327 328

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
329
        out1 = F.log_sigmoid(x)
330 331 332 333
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
334
            self.assertTrue(np.allclose(out_ref, r.numpy()))
335 336
        paddle.enable_static()

337
    def test_fluid_api(self):
338
        paddle.enable_static()
339
        with paddle.static.program_guard(paddle.static.Program()):
340
            x = paddle.fluid.data('X', [11, 17])
341 342 343 344 345 346
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

347
    def test_errors(self):
348
        paddle.enable_static()
349 350
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
351
            self.assertRaises(TypeError, F.log_sigmoid, 1)
352
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
353 354
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
355
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
356
            # support the input dtype is float16
J
joejiong 已提交
357 358
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
359
            F.log_sigmoid(x_fp16)
360 361


362
class TestTanh(TestActivation, TestParameter):
363 364
    def setUp(self):
        self.op_type = "tanh"
365
        self.init_dtype()
366
        np.random.seed(1024)
367 368 369 370 371
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
372 373

    def test_check_grad(self):
374 375
        if self.dtype == np.float16:
            return
376
        self.check_grad(['X'], 'Out')
377

378 379 380 381 382 383
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

384

W
WangXi 已提交
385 386 387 388
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
389
        np.random.seed(1024)
W
WangXi 已提交
390
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
391
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
392
            else paddle.CPUPlace()
393 394 395 396
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
397 398

    def test_static_api(self):
399
        paddle.enable_static()
W
WangXi 已提交
400
        with paddle.static.program_guard(paddle.static.Program()):
401
            x = paddle.fluid.data('X', [10, 12], self.dtype)
402
            out1 = self.tanh(x)
W
WangXi 已提交
403 404 405 406 407 408 409 410 411 412
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
413
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
414 415 416 417 418 419 420 421 422 423
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
424
        paddle.enable_static()
W
WangXi 已提交
425 426 427 428 429 430 431 432 433
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
434
        paddle.enable_static()
W
WangXi 已提交
435 436
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
437
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
438
            # The input dtype must be float16, float32.
J
joejiong 已提交
439 440
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
441
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
442
            # support the input dtype is float16
J
joejiong 已提交
443 444
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
445 446 447 448 449 450 451
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
452 453


454
class TestAtan(TestActivation, TestParameter):
455 456 457 458
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

459
        np.random.seed(1024)
460 461 462 463 464 465 466 467 468
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
469
        self.check_grad(['X'], 'Out')
470

W
WuHaobo 已提交
471 472 473 474 475 476 477 478 479 480 481
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

482 483 484 485 486 487 488 489
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

490

491 492 493 494 495
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

496
        np.random.seed(1024)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

568
        np.random.seed(1024)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


635 636 637 638 639 640
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
641 642
    def setUp(self):
        self.op_type = "tanh_shrink"
643 644
        self.init_dtype()

645
        np.random.seed(1024)
646 647
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
648

649
        self.inputs = {'X': x}
650
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
651 652

    def test_check_grad(self):
653 654
        if self.dtype == np.float16:
            return
655
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
656

657

658 659 660
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
661
        np.random.seed(1024)
662
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
663
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
664 665 666
            else paddle.CPUPlace()

    def test_static_api(self):
667
        paddle.enable_static()
668
        with paddle.static.program_guard(paddle.static.Program()):
669
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
691
        paddle.enable_static()
692 693 694 695 696 697 698 699 700
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
701
        paddle.enable_static()
702 703 704 705
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
706 707
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
708 709
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
710 711
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
712 713 714
            F.tanhshrink(x_fp16)


715 716 717 718 719 720
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
721
class TestHardShrink(TestActivation):
722 723
    def setUp(self):
        self.op_type = "hard_shrink"
724 725
        self.init_dtype()

726 727
        self.threshold = 0.5
        self.set_attrs()
728
        np.random.seed(1024)
Z
zhupengyang 已提交
729
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
730
        out = ref_hardshrink(x, self.threshold)
731

732
        self.attrs = {'threshold': self.threshold}
733
        self.inputs = {'X': x}
734
        self.outputs = {'Out': out}
735

736 737 738
    def set_attrs(self):
        pass

739
    def test_check_grad(self):
740 741
        if self.dtype == np.float16:
            return
742
        self.check_grad(['X'], 'Out')
743 744


745 746 747 748 749
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


750 751 752
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
753
        np.random.seed(1024)
754
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
755
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
756 757 758
            else paddle.CPUPlace()

    def test_static_api(self):
759
        paddle.enable_static()
760
        with paddle.static.program_guard(paddle.static.Program()):
761
            x = paddle.fluid.data('X', [10, 12])
762 763 764 765 766 767 768 769 770 771 772
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
773
        x = paddle.to_tensor(self.x_np)
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
790
        paddle.enable_static()
791 792 793 794 795 796 797 798
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

799
    def test_errors(self):
800
        paddle.enable_static()
801
        with paddle.static.program_guard(paddle.static.Program()):
802
            # The input type must be Variable.
803
            self.assertRaises(TypeError, F.hardshrink, 1)
804
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
805 806
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
807
            self.assertRaises(TypeError, F.hardshrink, x_int32)
808
            # support the input dtype is float16
J
joejiong 已提交
809 810
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
811
            F.hardshrink(x_fp16)
812 813


814 815 816 817 818 819 820 821 822 823 824
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
825
        np.random.seed(1024)
826
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
827
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
828 829 830
            else paddle.CPUPlace()

    def test_static_api(self):
831
        paddle.enable_static()
832
        with paddle.static.program_guard(paddle.static.Program()):
833
            x = paddle.fluid.data('X', [10, 12])
834 835 836 837 838 839 840 841 842 843 844
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
845
        x = paddle.to_tensor(self.x_np)
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
862
        paddle.enable_static()
863 864 865 866
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
867 868
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
869 870
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
871 872
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
873 874 875
            F.hardtanh(x_fp16)


876 877 878 879 880 881 882 883
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
884 885
    def setUp(self):
        self.op_type = "softshrink"
886 887
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
888 889
        self.init_dtype()

890
        threshold = 0.8
891

892
        np.random.seed(1023)
893 894 895 896
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
897
        self.outputs = {'Out': out}
898 899

    def test_check_grad(self):
900 901
        if self.dtype == np.float16:
            return
902
        self.check_grad(['X'], 'Out', check_eager=True)
903

904

905 906 907 908
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
909
        np.random.seed(1024)
910
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
911
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
912 913 914
            else paddle.CPUPlace()

    def test_static_api(self):
915
        paddle.enable_static()
916
        with paddle.static.program_guard(paddle.static.Program()):
917
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
939
        paddle.enable_static()
940 941 942 943 944 945 946 947
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

948
    def test_errors(self):
949
        paddle.enable_static()
950
        with paddle.static.program_guard(paddle.static.Program()):
951
            # The input type must be Variable.
952
            self.assertRaises(TypeError, F.softshrink, 1)
953
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
954 955
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
956
            self.assertRaises(TypeError, F.softshrink, x_int32)
957
            # The threshold must be no less than zero
J
joejiong 已提交
958 959
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
960
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
961
            # support the input dtype is float16
J
joejiong 已提交
962 963
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
964
            F.softshrink(x_fp16)
965 966


967
class TestSqrt(TestActivation, TestParameter):
968 969
    def setUp(self):
        self.op_type = "sqrt"
970
        self.python_api = paddle.sqrt
971 972
        self.init_dtype()

973
        np.random.seed(1023)
974 975 976 977 978
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
979 980

    def test_check_grad(self):
981 982
        if self.dtype == np.float16:
            return
983 984 985 986
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
987

988

989 990 991 992 993
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
994
        self.python_api = paddle.sqrt
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1011
        self.check_output_with_place(place, check_eager=True)
1012 1013 1014

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1015
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1016 1017


Z
zhoukunsheng 已提交
1018 1019 1020 1021 1022
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

1023
        np.random.seed(1024)
Z
zhupengyang 已提交
1024
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
1036
class TestAbs(TestActivation):
1037 1038
    def setUp(self):
        self.op_type = "abs"
1039 1040
        self.init_dtype()

1041
        np.random.seed(1024)
1042
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1043
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1044
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1045
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1046 1047
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1048 1049 1050 1051
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1052 1053

    def test_check_grad(self):
1054 1055
        if self.dtype == np.float16:
            return
1056
        self.check_grad(['X'], 'Out', check_eager=False)
1057

1058

C
chengduo 已提交
1059
class TestCeil(TestActivation):
D
dzhwinter 已提交
1060 1061
    def setUp(self):
        self.op_type = "ceil"
1062 1063
        self.check_eager = True
        self.python_api = paddle.ceil
1064 1065
        self.init_dtype()

1066
        np.random.seed(1024)
Z
zhupengyang 已提交
1067
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1068 1069 1070 1071
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1072

D
dzhwinter 已提交
1073
    # The same reason with TestFloor
C
chengduo 已提交
1074
    def test_check_grad(self):
1075 1076 1077
        pass


C
chengduo 已提交
1078
class TestFloor(TestActivation):
D
dzhwinter 已提交
1079 1080
    def setUp(self):
        self.op_type = "floor"
1081 1082
        self.check_eager = True
        self.python_api = paddle.floor
1083 1084
        self.init_dtype()

1085
        np.random.seed(1024)
Z
zhupengyang 已提交
1086
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1087 1088 1089 1090
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1091

D
dzhwinter 已提交
1092
    # the gradient on floor, ceil, round is undefined.
1093
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1094 1095
    # The same reason with TestFloor
    def test_check_grad(self):
1096 1097 1098
        pass


C
chengduo 已提交
1099
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1100 1101
    def setUp(self):
        self.op_type = "cos"
1102 1103
        self.init_dtype()

1104
        np.random.seed(1024)
Z
zhupengyang 已提交
1105
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1106 1107 1108 1109
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1110 1111

    def test_check_grad(self):
1112 1113
        if self.dtype == np.float16:
            return
1114
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1115

1116

J
joejiong 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1168 1169 1170 1171 1172
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1173
        np.random.seed(1024)
Z
zhupengyang 已提交
1174
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1175 1176 1177 1178 1179 1180 1181 1182
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1183
        self.check_grad(['X'], 'Out')
1184 1185


1186
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1187 1188
    def setUp(self):
        self.op_type = "sin"
1189 1190
        self.init_dtype()

1191
        np.random.seed(1024)
Z
zhupengyang 已提交
1192
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1193 1194 1195 1196
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1197 1198

    def test_check_grad(self):
1199 1200
        if self.dtype == np.float16:
            return
1201
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1202 1203


1204 1205 1206 1207 1208
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1209
        np.random.seed(2048)
Z
zhupengyang 已提交
1210
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1211 1212 1213 1214 1215 1216 1217 1218
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1219
        self.check_grad(['X'], 'Out')
1220 1221


X
xiaoting 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1276
class TestRound(TestActivation):
D
dzhwinter 已提交
1277 1278
    def setUp(self):
        self.op_type = "round"
1279 1280
        self.check_eager = True
        self.python_api = paddle.round
1281 1282
        self.init_dtype()

1283
        np.random.seed(1024)
Z
zhupengyang 已提交
1284
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1285 1286 1287 1288
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1289

C
chengduo 已提交
1290
    def test_check_grad(self):
1291 1292 1293
        pass


C
chengduo 已提交
1294
class TestRelu(TestActivation):
1295
    def setUp(self):
Q
qijun 已提交
1296
        self.op_type = "relu"
K
Kexin Zhao 已提交
1297 1298
        self.init_dtype()

1299
        np.random.seed(1024)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1312 1313

        self.outputs = {'Out': out}
1314 1315

    def test_check_grad(self):
K
Kexin Zhao 已提交
1316 1317
        if self.dtype == np.float16:
            return
1318
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1319 1320


1321 1322 1323
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1324
        np.random.seed(1024)
1325
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1326
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1327
            else paddle.CPUPlace()
1328 1329 1330 1331
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1332 1333

    def test_static_api(self):
1334
        paddle.enable_static()
1335
        with paddle.static.program_guard(paddle.static.Program()):
1336
            x = paddle.fluid.data('X', [10, 12])
1337
            out1 = self.relu(x)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1350 1351
        out1 = m(x)
        out2 = self.relu(x)
1352 1353 1354 1355 1356
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1357
    def test_errors(self):
1358
        paddle.enable_static()
1359
        with paddle.static.program_guard(paddle.static.Program()):
1360
            # The input type must be Variable.
1361
            self.assertRaises(TypeError, self.relu, 1)
1362
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1363 1364
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1365
            self.assertRaises(TypeError, self.relu, x_int32)
1366
            # support the input dtype is float16
J
joejiong 已提交
1367 1368
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1369 1370 1371 1372 1373 1374 1375
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1376 1377


1378 1379 1380 1381 1382 1383
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1384
class TestLeakyRelu(TestActivation):
1385 1386 1387
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1388 1389 1390
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1391
        alpha = self.get_alpha()
A
Adam 已提交
1392

1393
        np.random.seed(1024)
A
Adam 已提交
1394 1395
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1396 1397
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1398

1399
        self.inputs = {'X': x}
A
Adam 已提交
1400
        self.outputs = {'Out': out}
1401
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1402 1403 1404 1405

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1406
        self.check_grad(['X'], 'Out')
1407 1408


1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1428
        np.random.seed(1024)
1429
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1430
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1431 1432 1433
            else paddle.CPUPlace()

    def test_static_api(self):
1434
        paddle.enable_static()
1435
        with paddle.static.program_guard(paddle.static.Program()):
1436
            x = paddle.fluid.data('X', [10, 12])
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1448
        x = paddle.to_tensor(self.x_np)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1465
        paddle.enable_static()
1466 1467 1468 1469 1470 1471 1472 1473
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1474
    def test_errors(self):
1475
        paddle.enable_static()
1476
        with paddle.static.program_guard(paddle.static.Program()):
1477
            # The input type must be Variable.
1478
            self.assertRaises(TypeError, F.leaky_relu, 1)
1479
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1480 1481
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1482 1483
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1484 1485
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1486
            F.leaky_relu(x_fp16)
1487 1488


1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1499 1500 1501
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1502
        approximate = True
1503
        np.random.seed(1024)
1504 1505
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1506

1507
        self.inputs = {'X': x}
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1522
        np.random.seed(2048)
C
Clementine 已提交
1523
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1524
        out = gelu(x, approximate)
C
Clementine 已提交
1525

1526
        self.inputs = {'X': x}
C
Clementine 已提交
1527
        self.outputs = {'Out': out}
1528
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1529 1530 1531 1532

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1533
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1534 1535


1536 1537 1538
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1539
        np.random.seed(1024)
1540
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1541
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1542 1543 1544
            else paddle.CPUPlace()

    def test_static_api(self):
1545
        paddle.enable_static()
1546
        with paddle.static.program_guard(paddle.static.Program()):
1547
            x = paddle.fluid.data('X', [11, 17])
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1576
        paddle.enable_static()
1577 1578 1579 1580
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1581 1582
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1583 1584
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1585 1586
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1587 1588 1589
            F.gelu(x_fp16)


C
chengduo 已提交
1590
class TestBRelu(TestActivation):
1591 1592
    def setUp(self):
        self.op_type = "brelu"
1593 1594
        self.init_dtype()

1595
        np.random.seed(1024)
Z
zhupengyang 已提交
1596
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1597 1598
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1599 1600
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1601
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1602 1603 1604
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1605 1606 1607

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1608
        self.outputs = {'Out': t}
1609 1610

    def test_check_grad(self):
1611 1612
        if self.dtype == np.float16:
            return
1613
        self.check_grad(['X'], 'Out')
1614

1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1627
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1657 1658 1659 1660 1661 1662 1663
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1664
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1665
    def setUp(self):
1666
        self.op_type = "relu6"
1667 1668
        self.init_dtype()

1669
        np.random.seed(1024)
Z
zhupengyang 已提交
1670
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1671
        x[np.abs(x) < 0.005] = 0.02
1672
        out = ref_relu6(x)
1673

1674 1675
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1676
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1677

1678 1679 1680
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1681
        self.check_grad(['X'], 'Out')
1682 1683


1684 1685 1686
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1687
        np.random.seed(1024)
1688 1689
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1690
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1691 1692 1693
            else paddle.CPUPlace()

    def test_static_api(self):
1694
        paddle.enable_static()
1695
        with paddle.static.program_guard(paddle.static.Program()):
1696
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1718
        paddle.enable_static()
1719 1720 1721 1722 1723 1724 1725 1726
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1727
    def test_errors(self):
1728
        paddle.enable_static()
1729
        with paddle.static.program_guard(paddle.static.Program()):
1730
            # The input type must be Variable.
1731
            self.assertRaises(TypeError, F.relu6, 1)
1732
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1733 1734
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1735
            self.assertRaises(TypeError, F.relu6, x_int32)
1736
            # support the input dtype is float16
J
joejiong 已提交
1737 1738
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1739
            F.relu6(x_fp16)
1740 1741


1742 1743 1744 1745 1746
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1747 1748 1749 1750 1751
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1752 1753
        skip_check_grad_ci(reason="not implemented yet")

1754
        np.random.seed(1024)
Z
zhupengyang 已提交
1755
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1756 1757 1758 1759 1760 1761
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1762
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1763

1764
        self.inputs = {'X': x}
H
huangjun12 已提交
1765 1766 1767 1768 1769 1770
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1771 1772

        return  # not implemented yet
1773
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1774 1775


1776 1777 1778 1779
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1780
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1781 1782 1783 1784
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1785
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1804
        paddle.enable_static()
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1823
            # The input type must be Variable.
1824
            self.assertRaises(TypeError, F.hardswish, 1)
1825
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1826 1827
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1828
            self.assertRaises(TypeError, F.hardswish, x_int32)
1829
            # support the input dtype is float16
J
joejiong 已提交
1830 1831
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1832
            F.hardswish(x_fp16)
1833 1834


C
chengduo 已提交
1835
class TestSoftRelu(TestActivation):
1836 1837
    def setUp(self):
        self.op_type = "soft_relu"
1838 1839
        self.init_dtype()

1840
        np.random.seed(4096)
1841
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1842
        threshold = 2.0
Q
qijun 已提交
1843 1844
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1845
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1846 1847 1848
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1849 1850 1851 1852 1853
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1854 1855

    def test_check_grad(self):
1856 1857
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1858
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1859

1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1874
def elu(x, alpha):
Z
zhupengyang 已提交
1875
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1876 1877 1878
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1879
class TestELU(TestActivation):
1880 1881
    def setUp(self):
        self.op_type = "elu"
1882 1883
        self.init_dtype()

1884
        np.random.seed(1024)
Z
zhupengyang 已提交
1885
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1886
        alpha = self.get_alpha()
1887
        out = elu(x, alpha)
1888 1889 1890 1891
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1892
        self.outputs = {'Out': out}
1893 1894

    def test_check_grad(self):
1895 1896
        if self.dtype == np.float16:
            return
1897
        self.check_grad(['X'], 'Out')
1898

Z
zhupengyang 已提交
1899 1900 1901 1902 1903 1904 1905 1906
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1907

1908 1909 1910
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1911
        np.random.seed(1024)
1912
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1913
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1914
            else paddle.CPUPlace()
1915 1916 1917 1918
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1919 1920

    def test_static_api(self):
1921
        paddle.enable_static()
1922
        with paddle.static.program_guard(paddle.static.Program()):
1923
            x = paddle.fluid.data('X', [10, 12])
1924
            out1 = self.elu(x)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1936 1937
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1938 1939 1940 1941 1942 1943
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1944 1945
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1946 1947 1948 1949 1950 1951 1952
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1953
    def test_errors(self):
1954
        paddle.enable_static()
1955 1956
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1957
            self.assertRaises(TypeError, self.elu, 1)
1958
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1959 1960
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1961
            self.assertRaises(TypeError, self.elu, x_int32)
1962
            # support the input dtype is float16
J
joejiong 已提交
1963 1964
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1965 1966 1967
            self.elu(x_fp16)


Z
zhupengyang 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2068
class TestReciprocal(TestActivation):
Q
qijun 已提交
2069 2070
    def setUp(self):
        self.op_type = "reciprocal"
2071
        self.python_api = paddle.reciprocal
2072 2073
        self.init_dtype()

2074
        np.random.seed(1024)
2075 2076 2077 2078 2079
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2080 2081

    def test_check_grad(self):
2082 2083
        if self.dtype == np.float16:
            return
2084 2085 2086 2087
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2088 2089


C
chengduo 已提交
2090
class TestLog(TestActivation):
Q
qijun 已提交
2091 2092
    def setUp(self):
        self.op_type = "log"
2093 2094
        self.check_eager = True
        self.python_api = paddle.log
2095 2096
        self.init_dtype()

2097
        np.random.seed(1024)
2098 2099 2100 2101 2102
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2103 2104

    def test_check_grad(self):
2105 2106
        if self.dtype == np.float16:
            return
2107
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2118

J
joejiong 已提交
2119 2120 2121
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
2122 2123
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2135
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2170 2171 2172
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
2173 2174
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2186
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2221 2222 2223
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
2224 2225
        self.check_eager = True
        self.python_api = paddle.log1p
2226 2227
        self.init_dtype()

2228
        np.random.seed(1024)
2229 2230 2231 2232 2233 2234 2235 2236 2237
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2238
        self.check_grad(['X'], 'Out', check_eager=True)
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2252 2253 2254
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2255
        expected_res = np.log1p(input_x)
2256
        self.assertTrue(np.allclose(res1, expected_res))
2257 2258 2259 2260 2261 2262 2263 2264

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2265
        self.assertTrue(np.allclose(np_z, z_expected))
2266 2267


C
chengduo 已提交
2268
class TestSquare(TestActivation):
Q
qijun 已提交
2269 2270
    def setUp(self):
        self.op_type = "square"
2271
        self.python_api = paddle.square
2272 2273
        self.init_dtype()

2274
        np.random.seed(1024)
2275 2276 2277 2278 2279
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2280 2281

    def test_check_grad(self):
2282 2283
        if self.dtype == np.float16:
            return
2284 2285 2286 2287 2288
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2289

2290

2291 2292 2293 2294 2295
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2296
        self.python_api = paddle.square
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2313
        self.check_output_with_place(place, check_eager=True)
2314 2315 2316

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2317 2318
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2319 2320


C
chengduo 已提交
2321
class TestPow(TestActivation):
2322 2323
    def setUp(self):
        self.op_type = "pow"
2324 2325
        self.python_api = paddle.pow
        self.check_eager = False
2326 2327
        self.init_dtype()

2328
        np.random.seed(1024)
2329 2330 2331 2332
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2333
        self.attrs = {'factor': 3.0}
2334
        self.outputs = {'Out': out}
2335 2336

    def test_check_grad(self):
2337 2338
        if self.dtype == np.float16:
            return
2339
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2340

2341

2342 2343 2344
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
2345 2346
        self.check_eager = False
        self.python_api = paddle.pow
2347 2348
        self.init_dtype()

2349
        np.random.seed(1024)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2362
        self.check_output(check_eager=self.check_eager)
2363 2364 2365 2366

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2367
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2368 2369 2370 2371 2372

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2373 2374 2375 2376 2377
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2378 2379 2380 2381 2382

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2383 2384 2385
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2386 2387

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2388
        res_1, res_2, res, res_6 = exe.run(
2389 2390
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2391
            fetch_list=[out_1, out_2, res, out_6])
2392

2393 2394 2395
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2396

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2420

2421 2422 2423 2424 2425
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2426
class TestSTanh(TestActivation):
2427 2428 2429 2430 2431 2432
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2433 2434
    def setUp(self):
        self.op_type = "stanh"
2435
        self.init_dtype()
2436 2437
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2438

2439
        np.random.seed(1024)
2440
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2441 2442
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2443

2444
        self.inputs = {'X': x}
2445
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2446
        self.outputs = {'Out': out}
2447

Q
qijun 已提交
2448
    def test_check_grad(self):
2449 2450
        if self.dtype == np.float16:
            return
2451
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2452

2453

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2510
    def test_errors(self):
2511 2512
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2513
            # The input type must be Variable.
2514
            self.assertRaises(TypeError, paddle.stanh, 1)
2515
            # The input dtype must be float16, float32, float64.
2516 2517 2518
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2519
            # support the input dtype is float16
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2533 2534


2535 2536 2537 2538 2539 2540 2541
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2542
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2543 2544
    def setUp(self):
        self.op_type = "softplus"
2545 2546
        self.init_dtype()

2547 2548
        beta = 2
        threshold = 15
2549

2550
        np.random.seed(1024)
2551 2552 2553 2554
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2555
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2556 2557

    def test_check_grad(self):
2558 2559
        if self.dtype == np.float16:
            return
2560
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2561

2562

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2592 2593 2594 2595 2596
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2597
        np.random.seed(1024)
2598
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2599
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2600 2601 2602
            else paddle.CPUPlace()

    def test_static_api(self):
2603
        paddle.enable_static()
2604
        with paddle.static.program_guard(paddle.static.Program()):
2605
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2627
        paddle.enable_static()
2628 2629 2630 2631 2632 2633 2634 2635 2636
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2637
        paddle.enable_static()
2638 2639 2640 2641
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2642 2643
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2644 2645
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2646 2647
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2648 2649 2650 2651 2652 2653 2654 2655
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2656
class TestSoftsign(TestActivation):
2657 2658
    def setUp(self):
        self.op_type = "softsign"
2659 2660
        self.init_dtype()

2661
        np.random.seed(1024)
2662 2663 2664
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2665
        self.outputs = {'Out': out}
2666 2667

    def test_check_grad(self):
2668 2669
        if self.dtype == np.float16:
            return
2670
        self.check_grad(['X'], 'Out')
2671 2672


2673 2674 2675
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2676
        np.random.seed(1024)
2677
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2678
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2679 2680 2681
            else paddle.CPUPlace()

    def test_static_api(self):
2682
        paddle.enable_static()
2683
        with paddle.static.program_guard(paddle.static.Program()):
2684
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2706
        paddle.enable_static()
2707 2708 2709 2710 2711 2712 2713 2714 2715
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2716
        paddle.enable_static()
2717 2718 2719 2720
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2721 2722
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2723 2724
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2725 2726
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2727 2728 2729
            F.softsign(x_fp16)


2730 2731 2732 2733 2734
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2735
class TestThresholdedRelu(TestActivation):
2736 2737
    def setUp(self):
        self.op_type = "thresholded_relu"
2738 2739
        self.init_dtype()

2740
        threshold = 15
2741

2742 2743 2744 2745 2746 2747
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2748
        self.outputs = {'Out': out}
2749 2750

    def test_check_grad(self):
2751 2752
        if self.dtype == np.float16:
            return
2753
        self.check_grad(['X'], 'Out')
2754 2755


2756 2757 2758 2759 2760 2761 2762
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2763
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2764 2765 2766 2767 2768
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2769
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2800
    def test_errors(self):
2801 2802
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2803
            # The input type must be Variable.
2804
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2805
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2806 2807
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2808
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2809
            # support the input dtype is float16
J
joejiong 已提交
2810 2811
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2812
            F.thresholded_relu(x_fp16)
2813 2814


2815 2816 2817 2818
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2819
class TestHardSigmoid(TestActivation):
2820 2821
    def setUp(self):
        self.op_type = "hard_sigmoid"
2822 2823 2824 2825
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2826

2827 2828 2829
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2830

2831
        # Same reason as TestAbs
2832 2833 2834
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2835

2836
        out = ref_hardsigmoid(x, self.slope, self.offset)
2837

2838 2839
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2840
        self.outputs = {'Out': out}
2841

2842 2843
    def set_attrs(self):
        pass
2844

2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2861
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2862 2863 2864 2865
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2866
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2885
        paddle.enable_static()
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2904
            # The input type must be Variable.
2905
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2906
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2907 2908
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2909
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2910
            # support the input dtype is float16
J
joejiong 已提交
2911 2912
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2913
            F.hardsigmoid(x_fp16)
2914 2915


2916 2917 2918 2919 2920
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2921
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2922 2923
    def setUp(self):
        self.op_type = "swish"
2924 2925
        self.init_dtype()

2926
        np.random.seed(1024)
2927 2928 2929
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2930
        self.attrs = {'beta': 1.0}
2931
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2932 2933

    def test_check_grad(self):
2934 2935
        if self.dtype == np.float16:
            return
2936 2937
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2938

2939 2940 2941 2942 2943
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2944
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2945 2946 2947 2948 2949
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2950
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2980

2981
    def test_errors(self):
2982 2983
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2984
            # The input type must be Variable.
2985
            self.assertRaises(TypeError, F.swish, 1)
2986
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2987 2988
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2989
            self.assertRaises(TypeError, F.swish, x_int32)
2990
            # support the input dtype is float16
J
joejiong 已提交
2991 2992
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2993
            F.swish(x_fp16)
2994 2995


2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3107
create_test_error_class('tan')
X
xiaoting 已提交
3108 3109 3110
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3111 3112


3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3132 3133 3134 3135 3136
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3137
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3138 3139 3140 3141
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3142

C
chengduo 已提交
3143
        def test_check_output(self):
3144
            place = core.CUDAPlace(0)
C
chengduo 已提交
3145 3146 3147
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3148

C
chengduo 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3162
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3163
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3164
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3165 3166
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3167
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3168
create_test_act_fp16_class(TestHardShrink)
3169
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3170 3171 3172 3173 3174
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3175
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3176
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3177
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3178
create_test_act_fp16_class(TestSin)
3179
create_test_act_fp16_class(TestSinh)
3180 3181
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3182 3183 3184
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3185 3186
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3187
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3188 3189
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3190
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3191
create_test_act_fp16_class(TestELU)
3192
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3193 3194
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3195 3196 3197 3198
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3199
create_test_act_fp16_class(TestLog10, atol=5e-2)
3200
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3201 3202
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3203
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3204 3205 3206 3207 3208
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3209
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3210
create_test_act_fp16_class(TestHardSwish)
3211
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3240 3241
if __name__ == "__main__":
    unittest.main()