test_activation_op.py 90.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20 21

from op_test import OpTest
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61 62 63 64

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
65 66
        if self.dtype == np.float16:
            return
67
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
68

69
    def init_dtype(self):
70
        self.dtype = np.float64
71

72 73 74
    def init_kernel_type(self):
        pass

Q
qijun 已提交
75

76 77 78
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
79
            np_x = np.array([0.1])
80
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
81
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
82 83
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
84 85 86
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
87 88 89 90 91 92 93 94 95 96

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
97
class TestSigmoid(TestActivation):
Q
qijun 已提交
98 99
    def setUp(self):
        self.op_type = "sigmoid"
100 101
        self.init_dtype()

102
        np.random.seed(1024)
103 104 105 106 107
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
108

109 110 111
    def init_dtype(self):
        self.dtype = np.float32

112
    def test_check_grad(self):
113 114 115 116
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

117

C
chengduo 已提交
118
class TestLogSigmoid(TestActivation):
119 120
    def setUp(self):
        self.op_type = "logsigmoid"
121 122
        self.init_dtype()

123
        np.random.seed(2048)
124 125 126
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

127
        self.inputs = {'X': x}
128
        self.outputs = {'Out': out}
129 130

    def test_check_grad(self):
131 132
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
133
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
134 135


136
class TestLogSigmoidAPI(unittest.TestCase):
137
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
138
    def setUp(self):
139
        np.random.seed(1024)
140
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
141
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
142 143 144
            else paddle.CPUPlace()

    def test_static_api(self):
145
        paddle.enable_static()
146
        with paddle.static.program_guard(paddle.static.Program()):
147
            x = paddle.fluid.data('X', [11, 17])
148
            out1 = F.log_sigmoid(x)
149 150 151 152 153 154
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
155
            self.assertTrue(np.allclose(out_ref, r))
156 157 158 159

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
160
        out1 = F.log_sigmoid(x)
161 162 163 164
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
165
            self.assertTrue(np.allclose(out_ref, r.numpy()))
166 167
        paddle.enable_static()

168
    def test_fluid_api(self):
169
        paddle.enable_static()
170
        with paddle.static.program_guard(paddle.static.Program()):
171
            x = paddle.fluid.data('X', [11, 17])
172 173 174 175 176 177
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

178
    def test_errors(self):
179
        paddle.enable_static()
180 181
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
182
            self.assertRaises(TypeError, F.log_sigmoid, 1)
183
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
184 185
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
186
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
187
            # support the input dtype is float16
J
joejiong 已提交
188 189
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
190
            F.log_sigmoid(x_fp16)
191 192


193
class TestTanh(TestActivation, TestParameter):
194 195
    def setUp(self):
        self.op_type = "tanh"
196
        self.init_dtype()
197
        np.random.seed(1024)
198 199 200 201 202
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
203 204

    def test_check_grad(self):
205 206
        if self.dtype == np.float16:
            return
207
        self.check_grad(['X'], 'Out')
208

209 210 211 212 213 214
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

215

W
WangXi 已提交
216 217 218 219
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
220
        np.random.seed(1024)
W
WangXi 已提交
221
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
222
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
223 224 225
            else paddle.CPUPlace()

    def test_static_api(self):
226
        paddle.enable_static()
W
WangXi 已提交
227
        with paddle.static.program_guard(paddle.static.Program()):
228
            x = paddle.fluid.data('X', [10, 12], self.dtype)
W
WangXi 已提交
229 230 231 232 233 234 235 236 237 238 239
            out1 = F.tanh(x)
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
240
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
241 242 243 244 245 246 247 248 249 250
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
251
        paddle.enable_static()
W
WangXi 已提交
252 253 254 255 256 257 258 259 260
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
261
        paddle.enable_static()
W
WangXi 已提交
262 263 264 265
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanh, 1)
            # The input dtype must be float16, float32.
J
joejiong 已提交
266 267
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
W
WangXi 已提交
268 269
            self.assertRaises(TypeError, F.tanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
270 271
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
W
WangXi 已提交
272 273 274
            F.tanh(x_fp16)


275
class TestAtan(TestActivation, TestParameter):
276 277 278 279
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

280
        np.random.seed(1024)
281 282 283 284 285 286 287 288 289
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
290
        self.check_grad(['X'], 'Out')
291

W
WuHaobo 已提交
292 293 294 295 296 297 298 299 300 301 302
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

303 304 305 306 307 308 309 310
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

311

312 313 314 315 316
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

317
        np.random.seed(1024)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

389
        np.random.seed(1024)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


456 457 458 459 460 461
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
462 463
    def setUp(self):
        self.op_type = "tanh_shrink"
464 465
        self.init_dtype()

466
        np.random.seed(1024)
467 468
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
469

470
        self.inputs = {'X': x}
471
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
472 473

    def test_check_grad(self):
474 475
        if self.dtype == np.float16:
            return
476
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
477

478

479 480 481
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
482
        np.random.seed(1024)
483
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
484
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
485 486 487
            else paddle.CPUPlace()

    def test_static_api(self):
488
        paddle.enable_static()
489
        with paddle.static.program_guard(paddle.static.Program()):
490
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
512
        paddle.enable_static()
513 514 515 516 517 518 519 520 521
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
522
        paddle.enable_static()
523 524 525 526
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
527 528
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
529 530
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
531 532
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
533 534 535
            F.tanhshrink(x_fp16)


536 537 538 539 540 541
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
542
class TestHardShrink(TestActivation):
543 544
    def setUp(self):
        self.op_type = "hard_shrink"
545 546
        self.init_dtype()

547 548
        self.threshold = 0.5
        self.set_attrs()
549
        np.random.seed(1024)
Z
zhupengyang 已提交
550
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
551
        out = ref_hardshrink(x, self.threshold)
552

553
        self.attrs = {'threshold': self.threshold}
554
        self.inputs = {'X': x}
555
        self.outputs = {'Out': out}
556

557 558 559
    def set_attrs(self):
        pass

560
    def test_check_grad(self):
561 562
        if self.dtype == np.float16:
            return
563
        self.check_grad(['X'], 'Out')
564 565


566 567 568 569 570
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


571 572 573
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
574
        np.random.seed(1024)
575
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
576
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
577 578 579
            else paddle.CPUPlace()

    def test_static_api(self):
580
        paddle.enable_static()
581
        with paddle.static.program_guard(paddle.static.Program()):
582
            x = paddle.fluid.data('X', [10, 12])
583 584 585 586 587 588 589 590 591 592 593
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
594
        x = paddle.to_tensor(self.x_np)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
611
        paddle.enable_static()
612 613 614 615 616 617 618 619
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

620
    def test_errors(self):
621
        paddle.enable_static()
622
        with paddle.static.program_guard(paddle.static.Program()):
623
            # The input type must be Variable.
624
            self.assertRaises(TypeError, F.hardshrink, 1)
625
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
626 627
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
628
            self.assertRaises(TypeError, F.hardshrink, x_int32)
629
            # support the input dtype is float16
J
joejiong 已提交
630 631
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
632
            F.hardshrink(x_fp16)
633 634


635 636 637 638 639 640 641 642 643 644 645
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
646
        np.random.seed(1024)
647
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
648
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
649 650 651
            else paddle.CPUPlace()

    def test_static_api(self):
652
        paddle.enable_static()
653
        with paddle.static.program_guard(paddle.static.Program()):
654
            x = paddle.fluid.data('X', [10, 12])
655 656 657 658 659 660 661 662 663 664 665
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
666
        x = paddle.to_tensor(self.x_np)
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
683
        paddle.enable_static()
684 685 686 687
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
688 689
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
690 691
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
692 693
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
694 695 696
            F.hardtanh(x_fp16)


697 698 699 700 701 702 703 704
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
705 706
    def setUp(self):
        self.op_type = "softshrink"
707 708
        self.init_dtype()

709
        threshold = 0.8
710

711
        np.random.seed(1023)
712 713 714 715
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
716
        self.outputs = {'Out': out}
717 718

    def test_check_grad(self):
719 720
        if self.dtype == np.float16:
            return
721
        self.check_grad(['X'], 'Out')
722

723

724 725 726 727
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
728
        np.random.seed(1024)
729
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
730
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
731 732 733
            else paddle.CPUPlace()

    def test_static_api(self):
734
        paddle.enable_static()
735
        with paddle.static.program_guard(paddle.static.Program()):
736
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
758
        paddle.enable_static()
759 760 761 762 763 764 765 766
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

767
    def test_errors(self):
768
        paddle.enable_static()
769
        with paddle.static.program_guard(paddle.static.Program()):
770
            # The input type must be Variable.
771
            self.assertRaises(TypeError, F.softshrink, 1)
772
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
773 774
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
775
            self.assertRaises(TypeError, F.softshrink, x_int32)
776
            # The threshold must be no less than zero
J
joejiong 已提交
777 778
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
779
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
780
            # support the input dtype is float16
J
joejiong 已提交
781 782
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
783
            F.softshrink(x_fp16)
784 785


786
class TestSqrt(TestActivation, TestParameter):
787 788
    def setUp(self):
        self.op_type = "sqrt"
789 790
        self.init_dtype()

791
        np.random.seed(1023)
792 793 794 795 796
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
797 798

    def test_check_grad(self):
799 800
        if self.dtype == np.float16:
            return
801
        self.check_grad(['X'], 'Out')
802

803

Z
zhoukunsheng 已提交
804 805 806 807 808
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

809
        np.random.seed(1024)
Z
zhupengyang 已提交
810
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
811 812 813 814 815 816 817 818 819 820 821
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
822
class TestAbs(TestActivation):
823 824
    def setUp(self):
        self.op_type = "abs"
825 826
        self.init_dtype()

827
        np.random.seed(1024)
828
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
829
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
830
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
831
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
832 833
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
834 835 836 837
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
838 839

    def test_check_grad(self):
840 841
        if self.dtype == np.float16:
            return
842
        self.check_grad(['X'], 'Out')
843

844

C
chengduo 已提交
845
class TestCeil(TestActivation):
D
dzhwinter 已提交
846 847
    def setUp(self):
        self.op_type = "ceil"
848 849
        self.init_dtype()

850
        np.random.seed(1024)
Z
zhupengyang 已提交
851
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
852 853 854 855
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
856

D
dzhwinter 已提交
857
    # The same reason with TestFloor
C
chengduo 已提交
858
    def test_check_grad(self):
859 860 861
        pass


C
chengduo 已提交
862
class TestFloor(TestActivation):
D
dzhwinter 已提交
863 864
    def setUp(self):
        self.op_type = "floor"
865 866
        self.init_dtype()

867
        np.random.seed(1024)
Z
zhupengyang 已提交
868
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
869 870 871 872
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
873

D
dzhwinter 已提交
874
    # the gradient on floor, ceil, round is undefined.
875
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
876 877
    # The same reason with TestFloor
    def test_check_grad(self):
878 879 880
        pass


C
chengduo 已提交
881
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
882 883
    def setUp(self):
        self.op_type = "cos"
884 885
        self.init_dtype()

886
        np.random.seed(1024)
Z
zhupengyang 已提交
887
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
888 889 890 891
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
892 893

    def test_check_grad(self):
894 895
        if self.dtype == np.float16:
            return
896
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
897

898

J
joejiong 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


950 951 952 953 954
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

955
        np.random.seed(1024)
Z
zhupengyang 已提交
956
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
957 958 959 960 961 962 963 964
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
965
        self.check_grad(['X'], 'Out')
966 967


968
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
969 970
    def setUp(self):
        self.op_type = "sin"
971 972
        self.init_dtype()

973
        np.random.seed(1024)
Z
zhupengyang 已提交
974
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
975 976 977 978
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
979 980

    def test_check_grad(self):
981 982
        if self.dtype == np.float16:
            return
983
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
984 985


986 987 988 989 990
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

991
        np.random.seed(2048)
Z
zhupengyang 已提交
992
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
993 994 995 996 997 998 999 1000
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1001
        self.check_grad(['X'], 'Out')
1002 1003


C
chengduo 已提交
1004
class TestRound(TestActivation):
D
dzhwinter 已提交
1005 1006
    def setUp(self):
        self.op_type = "round"
1007 1008
        self.init_dtype()

1009
        np.random.seed(1024)
Z
zhupengyang 已提交
1010
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1011 1012 1013 1014
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1015

C
chengduo 已提交
1016
    def test_check_grad(self):
1017 1018 1019
        pass


C
chengduo 已提交
1020
class TestRelu(TestActivation):
1021
    def setUp(self):
Q
qijun 已提交
1022
        self.op_type = "relu"
K
Kexin Zhao 已提交
1023 1024
        self.init_dtype()

1025
        np.random.seed(1024)
K
Kexin Zhao 已提交
1026
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
1027 1028
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
1029 1030
        out = np.maximum(x, 0)

1031
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
1032
        self.outputs = {'Out': out}
1033 1034

    def test_check_grad(self):
K
Kexin Zhao 已提交
1035 1036
        if self.dtype == np.float16:
            return
1037
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1038 1039


1040 1041 1042
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1043
        np.random.seed(1024)
1044
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1045
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1046 1047 1048
            else paddle.CPUPlace()

    def test_static_api(self):
1049
        paddle.enable_static()
1050
        with paddle.static.program_guard(paddle.static.Program()):
1051
            x = paddle.fluid.data('X', [10, 12])
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            out1 = F.relu(x)
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu(x)
        m = paddle.nn.ReLU()
        out2 = m(x)
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1072
    def test_errors(self):
1073
        paddle.enable_static()
1074
        with paddle.static.program_guard(paddle.static.Program()):
1075
            # The input type must be Variable.
1076
            self.assertRaises(TypeError, F.relu, 1)
1077
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1078 1079
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1080
            self.assertRaises(TypeError, F.relu, x_int32)
1081
            # support the input dtype is float16
J
joejiong 已提交
1082 1083
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1084
            F.relu(x_fp16)
1085 1086


1087 1088 1089 1090 1091 1092
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1093
class TestLeakyRelu(TestActivation):
1094 1095 1096
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1097 1098 1099
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1100
        alpha = self.get_alpha()
A
Adam 已提交
1101

1102
        np.random.seed(1024)
A
Adam 已提交
1103 1104
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1105 1106
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1107

1108
        self.inputs = {'X': x}
A
Adam 已提交
1109
        self.outputs = {'Out': out}
1110
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1111 1112 1113 1114

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1115
        self.check_grad(['X'], 'Out')
1116 1117


1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1137
        np.random.seed(1024)
1138
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1139
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1140 1141 1142
            else paddle.CPUPlace()

    def test_static_api(self):
1143
        paddle.enable_static()
1144
        with paddle.static.program_guard(paddle.static.Program()):
1145
            x = paddle.fluid.data('X', [10, 12])
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1157
        x = paddle.to_tensor(self.x_np)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1174
        paddle.enable_static()
1175 1176 1177 1178 1179 1180 1181 1182
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1183
    def test_errors(self):
1184
        paddle.enable_static()
1185
        with paddle.static.program_guard(paddle.static.Program()):
1186
            # The input type must be Variable.
1187
            self.assertRaises(TypeError, F.leaky_relu, 1)
1188
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1189 1190
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1191 1192
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1193 1194
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1195
            F.leaky_relu(x_fp16)
1196 1197


1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1208 1209 1210
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1211
        approximate = True
1212
        np.random.seed(1024)
1213 1214
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1215

1216
        self.inputs = {'X': x}
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1231
        np.random.seed(2048)
C
Clementine 已提交
1232
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1233
        out = gelu(x, approximate)
C
Clementine 已提交
1234

1235
        self.inputs = {'X': x}
C
Clementine 已提交
1236
        self.outputs = {'Out': out}
1237
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1238 1239 1240 1241

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1242
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1243 1244


1245 1246 1247
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1248
        np.random.seed(1024)
1249
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1250
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1251 1252 1253
            else paddle.CPUPlace()

    def test_static_api(self):
1254
        paddle.enable_static()
1255
        with paddle.static.program_guard(paddle.static.Program()):
1256
            x = paddle.fluid.data('X', [11, 17])
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1285
        paddle.enable_static()
1286 1287 1288 1289
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1290 1291
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1292 1293
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1294 1295
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1296 1297 1298
            F.gelu(x_fp16)


C
chengduo 已提交
1299
class TestBRelu(TestActivation):
1300 1301
    def setUp(self):
        self.op_type = "brelu"
1302 1303
        self.init_dtype()

1304
        np.random.seed(1024)
Z
zhupengyang 已提交
1305
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1306 1307
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1308 1309
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1310
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1311 1312 1313
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1314 1315 1316

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1317
        self.outputs = {'Out': t}
1318 1319

    def test_check_grad(self):
1320 1321
        if self.dtype == np.float16:
            return
1322
        self.check_grad(['X'], 'Out')
1323

1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1336
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1366 1367 1368 1369 1370 1371 1372
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1373
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1374
    def setUp(self):
1375
        self.op_type = "relu6"
1376 1377
        self.init_dtype()

1378
        np.random.seed(1024)
Z
zhupengyang 已提交
1379
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1380
        x[np.abs(x) < 0.005] = 0.02
1381
        out = ref_relu6(x)
1382

1383 1384
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1385
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1386

1387 1388 1389
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1390
        self.check_grad(['X'], 'Out')
1391 1392


1393 1394 1395
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1396
        np.random.seed(1024)
1397 1398
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1399
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1400 1401 1402
            else paddle.CPUPlace()

    def test_static_api(self):
1403
        paddle.enable_static()
1404
        with paddle.static.program_guard(paddle.static.Program()):
1405
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1427
        paddle.enable_static()
1428 1429 1430 1431 1432 1433 1434 1435
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1436
    def test_errors(self):
1437
        paddle.enable_static()
1438
        with paddle.static.program_guard(paddle.static.Program()):
1439
            # The input type must be Variable.
1440
            self.assertRaises(TypeError, F.relu6, 1)
1441
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1442 1443
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1444
            self.assertRaises(TypeError, F.relu6, x_int32)
1445
            # support the input dtype is float16
J
joejiong 已提交
1446 1447
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1448
            F.relu6(x_fp16)
1449 1450


1451 1452 1453 1454 1455
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1456 1457 1458 1459 1460
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

1461
        np.random.seed(1024)
Z
zhupengyang 已提交
1462
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1463 1464 1465 1466 1467 1468
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1469
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1470

1471
        self.inputs = {'X': x}
H
huangjun12 已提交
1472 1473 1474 1475 1476 1477
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1478
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1479 1480


1481 1482 1483 1484
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1485
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1486 1487 1488 1489
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1490
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1509
        paddle.enable_static()
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1528
            # The input type must be Variable.
1529
            self.assertRaises(TypeError, F.hardswish, 1)
1530
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1531 1532
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1533
            self.assertRaises(TypeError, F.hardswish, x_int32)
1534
            # support the input dtype is float16
J
joejiong 已提交
1535 1536
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1537
            F.hardswish(x_fp16)
1538 1539


C
chengduo 已提交
1540
class TestSoftRelu(TestActivation):
1541 1542
    def setUp(self):
        self.op_type = "soft_relu"
1543 1544
        self.init_dtype()

1545
        np.random.seed(4096)
1546
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1547
        threshold = 2.0
Q
qijun 已提交
1548 1549
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1550
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1551 1552 1553
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1554 1555 1556 1557 1558
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1559 1560

    def test_check_grad(self):
1561 1562
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1563
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1564

1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1579 1580 1581 1582 1583
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1584
class TestELU(TestActivation):
1585 1586
    def setUp(self):
        self.op_type = "elu"
1587 1588
        self.init_dtype()

1589
        np.random.seed(1024)
Z
zhupengyang 已提交
1590
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1591
        alpha = 1.
1592
        out = elu(x, alpha)
1593 1594 1595 1596
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1597
        self.outputs = {'Out': out}
1598 1599

    def test_check_grad(self):
1600 1601
        if self.dtype == np.float16:
            return
1602
        self.check_grad(['X'], 'Out')
1603 1604


1605 1606 1607
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1608
        np.random.seed(1024)
1609
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1610
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1611 1612 1613
            else paddle.CPUPlace()

    def test_static_api(self):
1614
        paddle.enable_static()
1615
        with paddle.static.program_guard(paddle.static.Program()):
1616
            x = paddle.fluid.data('X', [10, 12])
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
            out1 = F.elu(x)
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.elu(x)
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.elu(x, 0.2)
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1644
    def test_errors(self):
1645
        paddle.enable_static()
1646 1647 1648 1649
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.elu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1650 1651
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1652 1653
            self.assertRaises(TypeError, F.elu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1654 1655
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1656
            F.elu(x_fp16)
1657 1658


C
chengduo 已提交
1659
class TestReciprocal(TestActivation):
Q
qijun 已提交
1660 1661
    def setUp(self):
        self.op_type = "reciprocal"
1662 1663
        self.init_dtype()

1664
        np.random.seed(1024)
1665 1666 1667 1668 1669
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1670 1671

    def test_check_grad(self):
1672 1673
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1674
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1675 1676


C
chengduo 已提交
1677
class TestLog(TestActivation):
Q
qijun 已提交
1678 1679
    def setUp(self):
        self.op_type = "log"
1680 1681
        self.init_dtype()

1682
        np.random.seed(1024)
1683 1684 1685 1686 1687
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1688 1689

    def test_check_grad(self):
1690 1691
        if self.dtype == np.float16:
            return
1692
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1703

J
joejiong 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


1802 1803 1804 1805 1806
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

1807
        np.random.seed(1024)
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1831 1832 1833
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1834
        expected_res = np.log1p(input_x)
1835
        self.assertTrue(np.allclose(res1, expected_res))
1836 1837 1838 1839 1840 1841 1842 1843

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1844
        self.assertTrue(np.allclose(np_z, z_expected))
1845 1846


C
chengduo 已提交
1847
class TestSquare(TestActivation):
Q
qijun 已提交
1848 1849
    def setUp(self):
        self.op_type = "square"
1850 1851
        self.init_dtype()

1852
        np.random.seed(1024)
1853 1854 1855 1856 1857
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1858 1859

    def test_check_grad(self):
1860 1861
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1862
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1863

1864

C
chengduo 已提交
1865
class TestPow(TestActivation):
1866 1867
    def setUp(self):
        self.op_type = "pow"
1868 1869
        self.init_dtype()

1870
        np.random.seed(1024)
1871 1872 1873 1874
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1875
        self.attrs = {'factor': 3.0}
1876
        self.outputs = {'Out': out}
1877 1878

    def test_check_grad(self):
1879 1880
        if self.dtype == np.float16:
            return
1881
        self.check_grad(['X'], 'Out')
1882

1883

1884 1885 1886 1887 1888
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

1889
        np.random.seed(1024)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1907
        self.check_grad(['X'], 'Out')
1908 1909 1910 1911 1912

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1913 1914 1915 1916 1917
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1918 1919 1920 1921 1922

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1923 1924 1925
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1926 1927

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1928
        res_1, res_2, res, res_6 = exe.run(
1929 1930
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1931
            fetch_list=[out_1, out_2, res, out_6])
1932 1933 1934

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1935
        assert np.array_equal(res_6, np.power(input, 3))
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1960

1961 1962 1963 1964 1965
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
1966
class TestSTanh(TestActivation):
1967 1968 1969 1970 1971 1972
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

1973 1974
    def setUp(self):
        self.op_type = "stanh"
1975
        self.init_dtype()
1976 1977
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
1978

1979
        np.random.seed(1024)
1980
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1981 1982
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
1983

1984
        self.inputs = {'X': x}
1985
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1986
        self.outputs = {'Out': out}
1987

Q
qijun 已提交
1988
    def test_check_grad(self):
1989 1990
        if self.dtype == np.float16:
            return
1991
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1992

1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2050
    def test_errors(self):
2051 2052
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2053
            # The input type must be Variable.
2054
            self.assertRaises(TypeError, paddle.stanh, 1)
2055
            # The input dtype must be float16, float32, float64.
2056 2057 2058
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2059
            # support the input dtype is float16
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2073 2074


2075 2076 2077 2078 2079 2080 2081
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2082
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2083 2084
    def setUp(self):
        self.op_type = "softplus"
2085 2086
        self.init_dtype()

2087 2088
        beta = 2
        threshold = 15
2089

2090
        np.random.seed(1024)
2091 2092 2093 2094
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2095
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2096 2097

    def test_check_grad(self):
2098 2099
        if self.dtype == np.float16:
            return
2100
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2101

2102

2103 2104 2105 2106 2107
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2108
        np.random.seed(1024)
2109
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2110
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2111 2112 2113
            else paddle.CPUPlace()

    def test_static_api(self):
2114
        paddle.enable_static()
2115
        with paddle.static.program_guard(paddle.static.Program()):
2116
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2138
        paddle.enable_static()
2139 2140 2141 2142 2143 2144 2145 2146 2147
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2148
        paddle.enable_static()
2149 2150 2151 2152
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2153 2154
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2155 2156
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2157 2158
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2159 2160 2161 2162 2163 2164 2165 2166
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2167
class TestSoftsign(TestActivation):
2168 2169
    def setUp(self):
        self.op_type = "softsign"
2170 2171
        self.init_dtype()

2172
        np.random.seed(1024)
2173 2174 2175
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2176
        self.outputs = {'Out': out}
2177 2178

    def test_check_grad(self):
2179 2180
        if self.dtype == np.float16:
            return
2181
        self.check_grad(['X'], 'Out')
2182 2183


2184 2185 2186
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2187
        np.random.seed(1024)
2188
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2189
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2190 2191 2192
            else paddle.CPUPlace()

    def test_static_api(self):
2193
        paddle.enable_static()
2194
        with paddle.static.program_guard(paddle.static.Program()):
2195
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2217
        paddle.enable_static()
2218 2219 2220 2221 2222 2223 2224 2225 2226
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2227
        paddle.enable_static()
2228 2229 2230 2231
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2232 2233
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2234 2235
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2236 2237
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2238 2239 2240
            F.softsign(x_fp16)


2241 2242 2243 2244 2245
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2246
class TestThresholdedRelu(TestActivation):
2247 2248
    def setUp(self):
        self.op_type = "thresholded_relu"
2249 2250
        self.init_dtype()

2251
        threshold = 15
2252

2253 2254 2255 2256 2257 2258
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2259
        self.outputs = {'Out': out}
2260 2261

    def test_check_grad(self):
2262 2263
        if self.dtype == np.float16:
            return
2264
        self.check_grad(['X'], 'Out')
2265 2266


2267 2268 2269 2270 2271 2272 2273
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2274
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2275 2276 2277 2278 2279
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2280
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2311
    def test_errors(self):
2312 2313
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2314
            # The input type must be Variable.
2315
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2316
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2317 2318
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2319
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2320
            # support the input dtype is float16
J
joejiong 已提交
2321 2322
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2323
            F.thresholded_relu(x_fp16)
2324 2325


2326 2327 2328 2329
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2330
class TestHardSigmoid(TestActivation):
2331 2332
    def setUp(self):
        self.op_type = "hard_sigmoid"
2333 2334 2335 2336
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2337

2338 2339 2340
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2341

2342
        # Same reason as TestAbs
2343 2344 2345
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2346

2347
        out = ref_hardsigmoid(x, self.slope, self.offset)
2348

2349 2350
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2351
        self.outputs = {'Out': out}
2352

2353 2354
    def set_attrs(self):
        pass
2355

2356

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2372
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2373 2374 2375 2376
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2377
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2396
        paddle.enable_static()
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2415
            # The input type must be Variable.
2416
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2417
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2418 2419
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2420
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2421
            # support the input dtype is float16
J
joejiong 已提交
2422 2423
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2424
            F.hardsigmoid(x_fp16)
2425 2426


2427 2428 2429 2430 2431
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2432
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2433 2434
    def setUp(self):
        self.op_type = "swish"
2435 2436
        self.init_dtype()

2437
        np.random.seed(1024)
2438 2439 2440
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2441
        self.attrs = {'beta': 1.0}
2442
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2443 2444

    def test_check_grad(self):
2445 2446
        if self.dtype == np.float16:
            return
2447 2448
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2449

2450 2451 2452 2453 2454
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2455
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2456 2457 2458 2459 2460
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2461
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2491

2492
    def test_errors(self):
2493 2494
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2495
            # The input type must be Variable.
2496
            self.assertRaises(TypeError, F.swish, 1)
2497
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2498 2499
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2500
            self.assertRaises(TypeError, F.swish, x_int32)
2501
            # support the input dtype is float16
J
joejiong 已提交
2502 2503
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2504
            F.swish(x_fp16)
2505 2506


2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
2538
create_test_error_class('tan')
2539 2540


2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2560 2561 2562 2563 2564
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
2565
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
2566 2567 2568 2569
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2570

C
chengduo 已提交
2571
        def test_check_output(self):
2572
            place = core.CUDAPlace(0)
C
chengduo 已提交
2573 2574 2575
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2576

C
chengduo 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2593
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2594
create_test_act_fp16_class(TestHardShrink)
2595
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2596 2597 2598 2599 2600
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
2601
create_test_act_fp16_class(TestTan, grad_atol=0.85)
2602
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2603
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2604
create_test_act_fp16_class(TestSin)
2605
create_test_act_fp16_class(TestSinh)
2606 2607
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2608 2609
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2610
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2611 2612 2613 2614 2615 2616
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
J
joejiong 已提交
2617
create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
2618
create_test_act_fp16_class(TestLog10, atol=5e-2)
2619
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2620 2621
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2622
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2623 2624 2625 2626 2627 2628
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
2629
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2630

Q
qijun 已提交
2631 2632
if __name__ == "__main__":
    unittest.main()