test_activation_op.py 15.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
K
Kexin Zhao 已提交
17
import paddle.fluid.core as core
Q
qijun 已提交
18
from op_test import OpTest
A
Abhinav Arora 已提交
19
from scipy.special import expit
Q
qijun 已提交
20 21 22 23 24 25 26 27


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
28
        self.outputs = {'Out': np.exp(self.inputs['X'])}
Q
qijun 已提交
29 30 31 32 33

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
34
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
35 36 37 38 39 40 41 42


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
43
        self.outputs = {'Out': 1 / (1 + np.exp(-self.inputs['X']))}
Q
qijun 已提交
44 45 46 47

    def test_check_output(self):
        self.check_output()

48
    def test_check_grad(self):
F
fengjiayi 已提交
49
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
50 51


52 53 54 55 56 57
class TestLogSigmoid(OpTest):
    def setUp(self):
        self.op_type = "logsigmoid"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
58
        self.outputs = {'Out': np.log(1 / (1 + np.exp(-self.inputs['X'])))}
59 60 61 62 63

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
64
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
65 66


67 68 69 70 71 72
class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
73
        self.outputs = {'Out': np.tanh(self.inputs['X'])}
74 75 76 77 78

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
79
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
80 81


K
Kavya Srinet 已提交
82 83 84 85 86 87
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32")
        }
F
fengjiayi 已提交
88
        self.outputs = {'Out': self.inputs['X'] - np.tanh(self.inputs['X'])}
K
Kavya Srinet 已提交
89 90 91 92 93

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
94
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
95 96


97 98 99 100 101 102 103 104 105 106 107
class TestHardShrink(OpTest):
    def setUp(self):
        self.op_type = "hard_shrink"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        threshold = 0.5

        self.inputs = {'X': x}
        self.attrs = {'lambda': threshold}

        t = np.copy(x)
        t[(t >= -threshold) & (t <= threshold)] = 0
F
fengjiayi 已提交
108
        self.outputs = {'Out': t}
109 110 111 112 113

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
114
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
115 116


117 118 119 120 121 122 123 124 125 126 127
class TestSoftShrink(OpTest):
    def setUp(self):
        self.op_type = "softshrink"
        lambda_val = 0.1
        self.attrs = {'lambda': lambda_val}
        self.inputs = {
            'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32")
        }
        y = np.copy(self.inputs['X'])
        y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * (
            y - lambda_val)
F
fengjiayi 已提交
128
        self.outputs = {'Out': y}
129 130 131 132 133

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
134
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
135 136


137 138 139 140 141 142
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
143
        self.outputs = {'Out': np.sqrt(self.inputs['X'])}
144 145 146 147 148

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
149
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
150 151 152 153 154


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
Q
qijun 已提交
155 156 157 158 159 160
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
161
        self.inputs = {'X': x}
F
fengjiayi 已提交
162
        self.outputs = {'Out': np.abs(self.inputs['X'])}
163 164 165 166 167

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
168
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
169 170


D
dzhwinter 已提交
171 172 173 174 175
class TestCeil(OpTest):
    def setUp(self):
        self.op_type = "ceil"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
F
fengjiayi 已提交
176
        self.outputs = {'Out': np.ceil(self.inputs['X'])}
D
dzhwinter 已提交
177 178 179 180 181

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
182
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
183 184 185 186 187 188 189


class TestFloor(OpTest):
    def setUp(self):
        self.op_type = "floor"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
Q
Qiao Longfei 已提交
190
        self.outputs = {'Out': np.floor(self.inputs['X'])}
D
dzhwinter 已提交
191 192 193 194 195

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
196
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
197 198 199 200 201 202 203


class TestRound(OpTest):
    def setUp(self):
        self.op_type = "round"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
F
fengjiayi 已提交
204
        self.outputs = {'Out': np.round(self.inputs['X'])}
D
dzhwinter 已提交
205 206 207 208 209

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
210
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
D
dzhwinter 已提交
211 212


Q
qijun 已提交
213
class TestRelu(OpTest):
214
    def setUp(self):
Q
qijun 已提交
215
        self.op_type = "relu"
K
Kexin Zhao 已提交
216 217 218 219
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
220 221
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
222 223 224 225
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
226 227 228 229 230

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
K
Kexin Zhao 已提交
231 232
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
233
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
234

K
Kexin Zhao 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def init_dtype(self):
        pass


class TestFP16Relu(TestRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

249 250 251 252 253

class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
254 255
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
256 257
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
258
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
Q
qijun 已提交
259 260

        self.inputs = {'X': x}
261 262 263 264
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
F
fengjiayi 已提交
265
        self.outputs = {'Out': t}
266 267 268 269 270

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
271
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
272 273


274
class TestRelu6(OpTest):
K
Kavya Srinet 已提交
275
    def setUp(self):
276 277 278 279 280 281 282 283 284
        self.op_type = "relu6"
        x = np.random.uniform(-1, 1, [4, 10]).astype("float32")
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02

        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
K
Kavya Srinet 已提交
285
        self.outputs = {
F
fengjiayi 已提交
286
            'Out': np.minimum(np.maximum(self.inputs['X'], 0), threshold)
K
Kavya Srinet 已提交
287 288 289 290 291 292
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
293
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
K
Kavya Srinet 已提交
294 295


296 297 298
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
Q
qijun 已提交
299
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
300
        threshold = 2.0
Q
qijun 已提交
301 302 303
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
304 305 306 307 308
        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
F
fengjiayi 已提交
309
        self.outputs = {'Out': np.log((np.exp(t) + 1))}
310 311 312 313 314

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
315
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
316 317


318 319 320 321 322 323 324 325 326 327
class TestELU(OpTest):
    def setUp(self):
        self.op_type = "elu"
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
        alpha = 1.
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {
F
fengjiayi 已提交
328
            'Out': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
329 330 331 332 333 334
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
335
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
336 337


Q
qijun 已提交
338 339 340 341
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
F
fengjiayi 已提交
342
        self.outputs = {'Out': np.reciprocal(self.inputs['X'])}
Q
qijun 已提交
343 344 345 346 347

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
348
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
349 350 351 352 353 354 355 356


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
357
        self.outputs = {'Out': np.log(self.inputs['X'])}
Q
qijun 已提交
358 359 360 361 362

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
363
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
364 365 366 367 368 369 370 371


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
F
fengjiayi 已提交
372
        self.outputs = {'Out': np.square(self.inputs['X'])}
Q
qijun 已提交
373 374 375 376 377

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
378
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
379 380


381 382 383 384
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
Y
Yang Yang(Tony) 已提交
385
        self.attrs = {'factor': 3.0}
F
fengjiayi 已提交
386
        self.outputs = {'Out': np.power(self.inputs['X'], 3)}
387 388 389 390 391

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
392
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
393 394 395 396 397 398 399 400 401 402 403


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
F
fengjiayi 已提交
404
        self.outputs = {'Out': scale_b * np.tanh(self.inputs['X'] * scale_a)}
405 406 407 408

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
409
    def test_check_grad(self):
F
fengjiayi 已提交
410
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
411 412


K
kexinzhao 已提交
413 414 415 416
class TestSoftplus(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.inputs = {
Y
Yu Yang 已提交
417
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float64")
K
kexinzhao 已提交
418
        }
F
fengjiayi 已提交
419
        self.outputs = {'Out': np.log(1 + np.exp(self.inputs['X']))}
K
kexinzhao 已提交
420 421 422 423 424

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
425
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
426 427


428 429 430 431 432 433 434
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {
F
fengjiayi 已提交
435
            'Out': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X']))
436 437 438 439 440 441
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
442
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
443 444


445 446 447 448 449 450 451 452 453 454 455 456
class TestThresholdedRelu(OpTest):
    def setUp(self):
        self.op_type = "thresholded_relu"
        threshold = 0.25
        self.relative_error = 0.005
        X = np.random.uniform(-1, 1, [11, 17]).astype("float32")

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2

        self.inputs = {'X': X}
        self.attrs = {'threshold': threshold}
F
fengjiayi 已提交
457
        self.outputs = {'Out': (X > threshold) * X}
458 459 460 461 462

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
463
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
464 465


466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
class TestHardSigmoid(OpTest):
    def setUp(self):
        self.op_type = "hard_sigmoid"
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        self.inputs = {'X': X}
        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
F
fengjiayi 已提交
485
        self.outputs = {'Out': np.maximum(0.0, np.minimum(1.0, temp))}
486 487 488 489 490

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
491
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
492 493


A
Abhinav Arora 已提交
494 495 496 497 498 499
class TestSwish(OpTest):
    def setUp(self):
        self.op_type = "swish"
        X = np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        self.inputs = {'X': X}
        self.attrs = {'beta': 2.3}
F
fengjiayi 已提交
500
        self.outputs = {'Out': X * expit(self.attrs['beta'] * X)}
A
Abhinav Arora 已提交
501 502 503 504 505

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
506
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
507 508


509
#--------------------test MKLDNN--------------------
510
class TestMKLDNNRelu(TestRelu):
511
    def setUp(self):
512 513
        super(TestMKLDNNRelu, self).setUp()

514 515 516
        x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
517
        out = np.maximum(x, 0)
518

519 520 521
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {"use_mkldnn": True}
522 523


524
class TestMKLDNNTanh(TestTanh):
525
    def setUp(self):
526 527
        super(TestMKLDNNTanh, self).setUp()

528 529 530 531
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
        }
        self.outputs = {'Out': np.tanh(self.inputs['X'])}
K
Krzysztof Binias 已提交
532
        self.attrs = {"use_mkldnn": True}
533 534


535
class TestMKLDNNSqrt(TestSqrt):
536
    def setUp(self):
537 538
        super(TestMKLDNNSqrt, self).setUp()

539 540 541 542
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
        }
        self.outputs = {'Out': np.sqrt(self.inputs['X'])}
K
Krzysztof Binias 已提交
543
        self.attrs = {"use_mkldnn": True}
544 545


546
class TestMKLDNNAbs(TestAbs):
547
    def setUp(self):
548 549
        super(TestMKLDNNAbs, self).setUp()

550 551 552 553 554
        x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
        self.outputs = {'Out': np.abs(self.inputs['X'])}
K
Krzysztof Binias 已提交
555
        self.attrs = {"use_mkldnn": True}
556 557


Q
qijun 已提交
558 559
if __name__ == "__main__":
    unittest.main()