test_activation_op.py 94.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61 62 63 64

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
65 66
        if self.dtype == np.float16:
            return
67
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
68

69
    def init_dtype(self):
70
        self.dtype = np.float64
71

72 73 74
    def init_kernel_type(self):
        pass

Q
qijun 已提交
75

76 77 78
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
79
            np_x = np.array([0.1])
80
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
81
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
82 83
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
84 85 86
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
87 88 89 90 91 92 93

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
94 95 96 97 98
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
99 100


C
chengduo 已提交
101
class TestSigmoid(TestActivation):
Q
qijun 已提交
102 103
    def setUp(self):
        self.op_type = "sigmoid"
104 105
        self.init_dtype()

106
        np.random.seed(1024)
107 108 109 110 111
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
112

113 114 115
    def init_dtype(self):
        self.dtype = np.float32

116
    def test_check_grad(self):
117 118 119 120
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

121

M
minghaoBD 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
188
class TestLogSigmoid(TestActivation):
189 190
    def setUp(self):
        self.op_type = "logsigmoid"
191 192
        self.init_dtype()

193
        np.random.seed(2048)
194 195 196
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

197
        self.inputs = {'X': x}
198
        self.outputs = {'Out': out}
199 200

    def test_check_grad(self):
201 202
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
203
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
204 205


206
class TestLogSigmoidAPI(unittest.TestCase):
207
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
208
    def setUp(self):
209
        np.random.seed(1024)
210
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
211
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
212 213 214
            else paddle.CPUPlace()

    def test_static_api(self):
215
        paddle.enable_static()
216
        with paddle.static.program_guard(paddle.static.Program()):
217
            x = paddle.fluid.data('X', [11, 17])
218
            out1 = F.log_sigmoid(x)
219 220 221 222 223 224
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
225
            self.assertTrue(np.allclose(out_ref, r))
226 227 228 229

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
230
        out1 = F.log_sigmoid(x)
231 232 233 234
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
235
            self.assertTrue(np.allclose(out_ref, r.numpy()))
236 237
        paddle.enable_static()

238
    def test_fluid_api(self):
239
        paddle.enable_static()
240
        with paddle.static.program_guard(paddle.static.Program()):
241
            x = paddle.fluid.data('X', [11, 17])
242 243 244 245 246 247
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

248
    def test_errors(self):
249
        paddle.enable_static()
250 251
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
252
            self.assertRaises(TypeError, F.log_sigmoid, 1)
253
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
254 255
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
256
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
257
            # support the input dtype is float16
J
joejiong 已提交
258 259
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
260
            F.log_sigmoid(x_fp16)
261 262


263
class TestTanh(TestActivation, TestParameter):
264 265
    def setUp(self):
        self.op_type = "tanh"
266
        self.init_dtype()
267
        np.random.seed(1024)
268 269 270 271 272
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
273 274

    def test_check_grad(self):
275 276
        if self.dtype == np.float16:
            return
277
        self.check_grad(['X'], 'Out')
278

279 280 281 282 283 284
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

285

W
WangXi 已提交
286 287 288 289
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
290
        np.random.seed(1024)
W
WangXi 已提交
291
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
292
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
293
            else paddle.CPUPlace()
294 295 296 297
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
298 299

    def test_static_api(self):
300
        paddle.enable_static()
W
WangXi 已提交
301
        with paddle.static.program_guard(paddle.static.Program()):
302
            x = paddle.fluid.data('X', [10, 12], self.dtype)
303
            out1 = self.tanh(x)
W
WangXi 已提交
304 305 306 307 308 309 310 311 312 313
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
314
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
315 316 317 318 319 320 321 322 323 324
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
325
        paddle.enable_static()
W
WangXi 已提交
326 327 328 329 330 331 332 333 334
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
335
        paddle.enable_static()
W
WangXi 已提交
336 337
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
338
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
339
            # The input dtype must be float16, float32.
J
joejiong 已提交
340 341
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
342
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
343
            # support the input dtype is float16
J
joejiong 已提交
344 345
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
346 347 348 349 350 351 352
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
353 354


355
class TestAtan(TestActivation, TestParameter):
356 357 358 359
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

360
        np.random.seed(1024)
361 362 363 364 365 366 367 368 369
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
370
        self.check_grad(['X'], 'Out')
371

W
WuHaobo 已提交
372 373 374 375 376 377 378 379 380 381 382
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

383 384 385 386 387 388 389 390
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

391

392 393 394 395 396
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

397
        np.random.seed(1024)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

469
        np.random.seed(1024)
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


536 537 538 539 540 541
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
542 543
    def setUp(self):
        self.op_type = "tanh_shrink"
544 545
        self.init_dtype()

546
        np.random.seed(1024)
547 548
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
549

550
        self.inputs = {'X': x}
551
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
552 553

    def test_check_grad(self):
554 555
        if self.dtype == np.float16:
            return
556
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
557

558

559 560 561
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
562
        np.random.seed(1024)
563
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
564
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
565 566 567
            else paddle.CPUPlace()

    def test_static_api(self):
568
        paddle.enable_static()
569
        with paddle.static.program_guard(paddle.static.Program()):
570
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
592
        paddle.enable_static()
593 594 595 596 597 598 599 600 601
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
602
        paddle.enable_static()
603 604 605 606
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
607 608
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
609 610
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
611 612
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
613 614 615
            F.tanhshrink(x_fp16)


616 617 618 619 620 621
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
622
class TestHardShrink(TestActivation):
623 624
    def setUp(self):
        self.op_type = "hard_shrink"
625 626
        self.init_dtype()

627 628
        self.threshold = 0.5
        self.set_attrs()
629
        np.random.seed(1024)
Z
zhupengyang 已提交
630
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
631
        out = ref_hardshrink(x, self.threshold)
632

633
        self.attrs = {'threshold': self.threshold}
634
        self.inputs = {'X': x}
635
        self.outputs = {'Out': out}
636

637 638 639
    def set_attrs(self):
        pass

640
    def test_check_grad(self):
641 642
        if self.dtype == np.float16:
            return
643
        self.check_grad(['X'], 'Out')
644 645


646 647 648 649 650
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


651 652 653
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
654
        np.random.seed(1024)
655
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
656
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
657 658 659
            else paddle.CPUPlace()

    def test_static_api(self):
660
        paddle.enable_static()
661
        with paddle.static.program_guard(paddle.static.Program()):
662
            x = paddle.fluid.data('X', [10, 12])
663 664 665 666 667 668 669 670 671 672 673
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
674
        x = paddle.to_tensor(self.x_np)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
691
        paddle.enable_static()
692 693 694 695 696 697 698 699
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

700
    def test_errors(self):
701
        paddle.enable_static()
702
        with paddle.static.program_guard(paddle.static.Program()):
703
            # The input type must be Variable.
704
            self.assertRaises(TypeError, F.hardshrink, 1)
705
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
706 707
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
708
            self.assertRaises(TypeError, F.hardshrink, x_int32)
709
            # support the input dtype is float16
J
joejiong 已提交
710 711
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
712
            F.hardshrink(x_fp16)
713 714


715 716 717 718 719 720 721 722 723 724 725
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
726
        np.random.seed(1024)
727
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
728
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
729 730 731
            else paddle.CPUPlace()

    def test_static_api(self):
732
        paddle.enable_static()
733
        with paddle.static.program_guard(paddle.static.Program()):
734
            x = paddle.fluid.data('X', [10, 12])
735 736 737 738 739 740 741 742 743 744 745
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
746
        x = paddle.to_tensor(self.x_np)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
763
        paddle.enable_static()
764 765 766 767
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
768 769
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
770 771
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
772 773
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
774 775 776
            F.hardtanh(x_fp16)


777 778 779 780 781 782 783 784
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
785 786
    def setUp(self):
        self.op_type = "softshrink"
787 788
        self.init_dtype()

789
        threshold = 0.8
790

791
        np.random.seed(1023)
792 793 794 795
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
796
        self.outputs = {'Out': out}
797 798

    def test_check_grad(self):
799 800
        if self.dtype == np.float16:
            return
801
        self.check_grad(['X'], 'Out')
802

803

804 805 806 807
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
808
        np.random.seed(1024)
809
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
810
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
811 812 813
            else paddle.CPUPlace()

    def test_static_api(self):
814
        paddle.enable_static()
815
        with paddle.static.program_guard(paddle.static.Program()):
816
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
838
        paddle.enable_static()
839 840 841 842 843 844 845 846
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

847
    def test_errors(self):
848
        paddle.enable_static()
849
        with paddle.static.program_guard(paddle.static.Program()):
850
            # The input type must be Variable.
851
            self.assertRaises(TypeError, F.softshrink, 1)
852
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
853 854
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
855
            self.assertRaises(TypeError, F.softshrink, x_int32)
856
            # The threshold must be no less than zero
J
joejiong 已提交
857 858
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
859
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
860
            # support the input dtype is float16
J
joejiong 已提交
861 862
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
863
            F.softshrink(x_fp16)
864 865


866
class TestSqrt(TestActivation, TestParameter):
867 868
    def setUp(self):
        self.op_type = "sqrt"
869 870
        self.init_dtype()

871
        np.random.seed(1023)
872 873 874 875 876
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
877 878

    def test_check_grad(self):
879 880
        if self.dtype == np.float16:
            return
881
        self.check_grad(['X'], 'Out')
882

883

Z
zhoukunsheng 已提交
884 885 886 887 888
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

889
        np.random.seed(1024)
Z
zhupengyang 已提交
890
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
891 892 893 894 895 896 897 898 899 900 901
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
902
class TestAbs(TestActivation):
903 904
    def setUp(self):
        self.op_type = "abs"
905 906
        self.init_dtype()

907
        np.random.seed(1024)
908
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
909
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
910
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
911
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
912 913
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
914 915 916 917
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
918 919

    def test_check_grad(self):
920 921
        if self.dtype == np.float16:
            return
922
        self.check_grad(['X'], 'Out')
923

924

C
chengduo 已提交
925
class TestCeil(TestActivation):
D
dzhwinter 已提交
926 927
    def setUp(self):
        self.op_type = "ceil"
928 929
        self.init_dtype()

930
        np.random.seed(1024)
Z
zhupengyang 已提交
931
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
932 933 934 935
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
936

D
dzhwinter 已提交
937
    # The same reason with TestFloor
C
chengduo 已提交
938
    def test_check_grad(self):
939 940 941
        pass


C
chengduo 已提交
942
class TestFloor(TestActivation):
D
dzhwinter 已提交
943 944
    def setUp(self):
        self.op_type = "floor"
945 946
        self.init_dtype()

947
        np.random.seed(1024)
Z
zhupengyang 已提交
948
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
949 950 951 952
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
953

D
dzhwinter 已提交
954
    # the gradient on floor, ceil, round is undefined.
955
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
956 957
    # The same reason with TestFloor
    def test_check_grad(self):
958 959 960
        pass


C
chengduo 已提交
961
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
962 963
    def setUp(self):
        self.op_type = "cos"
964 965
        self.init_dtype()

966
        np.random.seed(1024)
Z
zhupengyang 已提交
967
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
968 969 970 971
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
972 973

    def test_check_grad(self):
974 975
        if self.dtype == np.float16:
            return
976
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
977

978

J
joejiong 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1030 1031 1032 1033 1034
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1035
        np.random.seed(1024)
Z
zhupengyang 已提交
1036
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1037 1038 1039 1040 1041 1042 1043 1044
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1045
        self.check_grad(['X'], 'Out')
1046 1047


1048
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1049 1050
    def setUp(self):
        self.op_type = "sin"
1051 1052
        self.init_dtype()

1053
        np.random.seed(1024)
Z
zhupengyang 已提交
1054
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1055 1056 1057 1058
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1059 1060

    def test_check_grad(self):
1061 1062
        if self.dtype == np.float16:
            return
1063
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1064 1065


1066 1067 1068 1069 1070
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1071
        np.random.seed(2048)
Z
zhupengyang 已提交
1072
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1073 1074 1075 1076 1077 1078 1079 1080
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1081
        self.check_grad(['X'], 'Out')
1082 1083


C
chengduo 已提交
1084
class TestRound(TestActivation):
D
dzhwinter 已提交
1085 1086
    def setUp(self):
        self.op_type = "round"
1087 1088
        self.init_dtype()

1089
        np.random.seed(1024)
Z
zhupengyang 已提交
1090
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1091 1092 1093 1094
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1095

C
chengduo 已提交
1096
    def test_check_grad(self):
1097 1098 1099
        pass


C
chengduo 已提交
1100
class TestRelu(TestActivation):
1101
    def setUp(self):
Q
qijun 已提交
1102
        self.op_type = "relu"
K
Kexin Zhao 已提交
1103 1104
        self.init_dtype()

1105
        np.random.seed(1024)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1118 1119

        self.outputs = {'Out': out}
1120 1121

    def test_check_grad(self):
K
Kexin Zhao 已提交
1122 1123
        if self.dtype == np.float16:
            return
1124
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1125 1126


1127 1128 1129
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1130
        np.random.seed(1024)
1131
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1132
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1133
            else paddle.CPUPlace()
1134 1135 1136 1137
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1138 1139

    def test_static_api(self):
1140
        paddle.enable_static()
1141
        with paddle.static.program_guard(paddle.static.Program()):
1142
            x = paddle.fluid.data('X', [10, 12])
1143
            out1 = self.relu(x)
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1156 1157
        out1 = m(x)
        out2 = self.relu(x)
1158 1159 1160 1161 1162
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1163
    def test_errors(self):
1164
        paddle.enable_static()
1165
        with paddle.static.program_guard(paddle.static.Program()):
1166
            # The input type must be Variable.
1167
            self.assertRaises(TypeError, self.relu, 1)
1168
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1169 1170
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1171
            self.assertRaises(TypeError, self.relu, x_int32)
1172
            # support the input dtype is float16
J
joejiong 已提交
1173 1174
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1175 1176 1177 1178 1179 1180 1181
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1182 1183


1184 1185 1186 1187 1188 1189
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1190
class TestLeakyRelu(TestActivation):
1191 1192 1193
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1194 1195 1196
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1197
        alpha = self.get_alpha()
A
Adam 已提交
1198

1199
        np.random.seed(1024)
A
Adam 已提交
1200 1201
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1202 1203
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1204

1205
        self.inputs = {'X': x}
A
Adam 已提交
1206
        self.outputs = {'Out': out}
1207
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1208 1209 1210 1211

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1212
        self.check_grad(['X'], 'Out')
1213 1214


1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1234
        np.random.seed(1024)
1235
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1236
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1237 1238 1239
            else paddle.CPUPlace()

    def test_static_api(self):
1240
        paddle.enable_static()
1241
        with paddle.static.program_guard(paddle.static.Program()):
1242
            x = paddle.fluid.data('X', [10, 12])
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1254
        x = paddle.to_tensor(self.x_np)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1271
        paddle.enable_static()
1272 1273 1274 1275 1276 1277 1278 1279
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1280
    def test_errors(self):
1281
        paddle.enable_static()
1282
        with paddle.static.program_guard(paddle.static.Program()):
1283
            # The input type must be Variable.
1284
            self.assertRaises(TypeError, F.leaky_relu, 1)
1285
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1286 1287
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1288 1289
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1290 1291
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1292
            F.leaky_relu(x_fp16)
1293 1294


1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1305 1306 1307
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1308
        approximate = True
1309
        np.random.seed(1024)
1310 1311
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1312

1313
        self.inputs = {'X': x}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1328
        np.random.seed(2048)
C
Clementine 已提交
1329
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1330
        out = gelu(x, approximate)
C
Clementine 已提交
1331

1332
        self.inputs = {'X': x}
C
Clementine 已提交
1333
        self.outputs = {'Out': out}
1334
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1335 1336 1337 1338

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1339
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1340 1341


1342 1343 1344
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1345
        np.random.seed(1024)
1346
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1347
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1348 1349 1350
            else paddle.CPUPlace()

    def test_static_api(self):
1351
        paddle.enable_static()
1352
        with paddle.static.program_guard(paddle.static.Program()):
1353
            x = paddle.fluid.data('X', [11, 17])
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1382
        paddle.enable_static()
1383 1384 1385 1386
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1387 1388
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1389 1390
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1391 1392
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1393 1394 1395
            F.gelu(x_fp16)


C
chengduo 已提交
1396
class TestBRelu(TestActivation):
1397 1398
    def setUp(self):
        self.op_type = "brelu"
1399 1400
        self.init_dtype()

1401
        np.random.seed(1024)
Z
zhupengyang 已提交
1402
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1403 1404
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1405 1406
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1407
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1408 1409 1410
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1411 1412 1413

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1414
        self.outputs = {'Out': t}
1415 1416

    def test_check_grad(self):
1417 1418
        if self.dtype == np.float16:
            return
1419
        self.check_grad(['X'], 'Out')
1420

1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1433
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1463 1464 1465 1466 1467 1468 1469
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1470
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1471
    def setUp(self):
1472
        self.op_type = "relu6"
1473 1474
        self.init_dtype()

1475
        np.random.seed(1024)
Z
zhupengyang 已提交
1476
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1477
        x[np.abs(x) < 0.005] = 0.02
1478
        out = ref_relu6(x)
1479

1480 1481
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1482
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1483

1484 1485 1486
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1487
        self.check_grad(['X'], 'Out')
1488 1489


1490 1491 1492
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1493
        np.random.seed(1024)
1494 1495
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1496
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1497 1498 1499
            else paddle.CPUPlace()

    def test_static_api(self):
1500
        paddle.enable_static()
1501
        with paddle.static.program_guard(paddle.static.Program()):
1502
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1524
        paddle.enable_static()
1525 1526 1527 1528 1529 1530 1531 1532
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1533
    def test_errors(self):
1534
        paddle.enable_static()
1535
        with paddle.static.program_guard(paddle.static.Program()):
1536
            # The input type must be Variable.
1537
            self.assertRaises(TypeError, F.relu6, 1)
1538
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1539 1540
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1541
            self.assertRaises(TypeError, F.relu6, x_int32)
1542
            # support the input dtype is float16
J
joejiong 已提交
1543 1544
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1545
            F.relu6(x_fp16)
1546 1547


1548 1549 1550 1551 1552
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1553 1554 1555 1556 1557
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1558 1559 1560
        from op_test import skip_check_grad_ci
        skip_check_grad_ci(reason="not implemented yet")

1561
        np.random.seed(1024)
Z
zhupengyang 已提交
1562
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1563 1564 1565 1566 1567 1568
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1569
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1570

1571
        self.inputs = {'X': x}
H
huangjun12 已提交
1572 1573 1574 1575 1576 1577
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1578 1579

        return  # not implemented yet
1580
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1581 1582


1583 1584 1585 1586
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1587
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1588 1589 1590 1591
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1592
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1611
        paddle.enable_static()
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1630
            # The input type must be Variable.
1631
            self.assertRaises(TypeError, F.hardswish, 1)
1632
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1633 1634
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1635
            self.assertRaises(TypeError, F.hardswish, x_int32)
1636
            # support the input dtype is float16
J
joejiong 已提交
1637 1638
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1639
            F.hardswish(x_fp16)
1640 1641


C
chengduo 已提交
1642
class TestSoftRelu(TestActivation):
1643 1644
    def setUp(self):
        self.op_type = "soft_relu"
1645 1646
        self.init_dtype()

1647
        np.random.seed(4096)
1648
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1649
        threshold = 2.0
Q
qijun 已提交
1650 1651
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1652
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1653 1654 1655
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1656 1657 1658 1659 1660
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1661 1662

    def test_check_grad(self):
1663 1664
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1665
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1666

1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1681 1682 1683 1684 1685
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1686
class TestELU(TestActivation):
1687 1688
    def setUp(self):
        self.op_type = "elu"
1689 1690
        self.init_dtype()

1691
        np.random.seed(1024)
Z
zhupengyang 已提交
1692
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1693
        alpha = 1.
1694
        out = elu(x, alpha)
1695 1696 1697 1698
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1699
        self.outputs = {'Out': out}
1700 1701

    def test_check_grad(self):
1702 1703
        if self.dtype == np.float16:
            return
1704
        self.check_grad(['X'], 'Out')
1705 1706


1707 1708 1709
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1710
        np.random.seed(1024)
1711
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1712
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1713
            else paddle.CPUPlace()
1714 1715 1716 1717
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1718 1719

    def test_static_api(self):
1720
        paddle.enable_static()
1721
        with paddle.static.program_guard(paddle.static.Program()):
1722
            x = paddle.fluid.data('X', [10, 12])
1723
            out1 = self.elu(x)
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1735 1736
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1737 1738 1739 1740 1741 1742
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1743 1744
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1745 1746 1747 1748 1749 1750 1751
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1752
    def test_errors(self):
1753
        paddle.enable_static()
1754 1755
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1756
            self.assertRaises(TypeError, self.elu, 1)
1757
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1758 1759
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1760
            self.assertRaises(TypeError, self.elu, x_int32)
1761
            # support the input dtype is float16
J
joejiong 已提交
1762 1763
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1764 1765 1766 1767 1768 1769 1770
            self.elu(x_fp16)


class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_
1771 1772


C
chengduo 已提交
1773
class TestReciprocal(TestActivation):
Q
qijun 已提交
1774 1775
    def setUp(self):
        self.op_type = "reciprocal"
1776 1777
        self.init_dtype()

1778
        np.random.seed(1024)
1779 1780 1781 1782 1783
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1784 1785

    def test_check_grad(self):
1786 1787
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1788
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1789 1790


C
chengduo 已提交
1791
class TestLog(TestActivation):
Q
qijun 已提交
1792 1793
    def setUp(self):
        self.op_type = "log"
1794 1795
        self.init_dtype()

1796
        np.random.seed(1024)
1797 1798 1799 1800 1801
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1802 1803

    def test_check_grad(self):
1804 1805
        if self.dtype == np.float16:
            return
1806
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1817

J
joejiong 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


1916 1917 1918 1919 1920
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

1921
        np.random.seed(1024)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1945 1946 1947
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1948
        expected_res = np.log1p(input_x)
1949
        self.assertTrue(np.allclose(res1, expected_res))
1950 1951 1952 1953 1954 1955 1956 1957

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1958
        self.assertTrue(np.allclose(np_z, z_expected))
1959 1960


C
chengduo 已提交
1961
class TestSquare(TestActivation):
Q
qijun 已提交
1962 1963
    def setUp(self):
        self.op_type = "square"
1964 1965
        self.init_dtype()

1966
        np.random.seed(1024)
1967 1968 1969 1970 1971
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1972 1973

    def test_check_grad(self):
1974 1975
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1976
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1977

1978

C
chengduo 已提交
1979
class TestPow(TestActivation):
1980 1981
    def setUp(self):
        self.op_type = "pow"
1982 1983
        self.init_dtype()

1984
        np.random.seed(1024)
1985 1986 1987 1988
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1989
        self.attrs = {'factor': 3.0}
1990
        self.outputs = {'Out': out}
1991 1992

    def test_check_grad(self):
1993 1994
        if self.dtype == np.float16:
            return
1995
        self.check_grad(['X'], 'Out')
1996

1997

1998 1999 2000 2001 2002
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

2003
        np.random.seed(1024)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2021
        self.check_grad(['X'], 'Out')
2022 2023 2024 2025 2026

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2027 2028 2029 2030 2031
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2032 2033 2034 2035 2036

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2037 2038 2039
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2040 2041

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2042
        res_1, res_2, res, res_6 = exe.run(
2043 2044
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2045
            fetch_list=[out_1, out_2, res, out_6])
2046

2047 2048 2049
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2074

2075 2076 2077 2078 2079
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2080
class TestSTanh(TestActivation):
2081 2082 2083 2084 2085 2086
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2087 2088
    def setUp(self):
        self.op_type = "stanh"
2089
        self.init_dtype()
2090 2091
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2092

2093
        np.random.seed(1024)
2094
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2095 2096
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2097

2098
        self.inputs = {'X': x}
2099
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2100
        self.outputs = {'Out': out}
2101

Q
qijun 已提交
2102
    def test_check_grad(self):
2103 2104
        if self.dtype == np.float16:
            return
2105
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2106

2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2164
    def test_errors(self):
2165 2166
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2167
            # The input type must be Variable.
2168
            self.assertRaises(TypeError, paddle.stanh, 1)
2169
            # The input dtype must be float16, float32, float64.
2170 2171 2172
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2173
            # support the input dtype is float16
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2187 2188


2189 2190 2191 2192 2193 2194 2195
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2196
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2197 2198
    def setUp(self):
        self.op_type = "softplus"
2199 2200
        self.init_dtype()

2201 2202
        beta = 2
        threshold = 15
2203

2204
        np.random.seed(1024)
2205 2206 2207 2208
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2209
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2210 2211

    def test_check_grad(self):
2212 2213
        if self.dtype == np.float16:
            return
2214
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2215

2216

2217 2218 2219 2220 2221
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2222
        np.random.seed(1024)
2223
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2224
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2225 2226 2227
            else paddle.CPUPlace()

    def test_static_api(self):
2228
        paddle.enable_static()
2229
        with paddle.static.program_guard(paddle.static.Program()):
2230
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2252
        paddle.enable_static()
2253 2254 2255 2256 2257 2258 2259 2260 2261
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2262
        paddle.enable_static()
2263 2264 2265 2266
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2267 2268
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2269 2270
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2271 2272
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2273 2274 2275 2276 2277 2278 2279 2280
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2281
class TestSoftsign(TestActivation):
2282 2283
    def setUp(self):
        self.op_type = "softsign"
2284 2285
        self.init_dtype()

2286
        np.random.seed(1024)
2287 2288 2289
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2290
        self.outputs = {'Out': out}
2291 2292

    def test_check_grad(self):
2293 2294
        if self.dtype == np.float16:
            return
2295
        self.check_grad(['X'], 'Out')
2296 2297


2298 2299 2300
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2301
        np.random.seed(1024)
2302
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2303
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2304 2305 2306
            else paddle.CPUPlace()

    def test_static_api(self):
2307
        paddle.enable_static()
2308
        with paddle.static.program_guard(paddle.static.Program()):
2309
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2331
        paddle.enable_static()
2332 2333 2334 2335 2336 2337 2338 2339 2340
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2341
        paddle.enable_static()
2342 2343 2344 2345
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2346 2347
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2348 2349
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2350 2351
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2352 2353 2354
            F.softsign(x_fp16)


2355 2356 2357 2358 2359
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2360
class TestThresholdedRelu(TestActivation):
2361 2362
    def setUp(self):
        self.op_type = "thresholded_relu"
2363 2364
        self.init_dtype()

2365
        threshold = 15
2366

2367 2368 2369 2370 2371 2372
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2373
        self.outputs = {'Out': out}
2374 2375

    def test_check_grad(self):
2376 2377
        if self.dtype == np.float16:
            return
2378
        self.check_grad(['X'], 'Out')
2379 2380


2381 2382 2383 2384 2385 2386 2387
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2388
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2389 2390 2391 2392 2393
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2394
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2425
    def test_errors(self):
2426 2427
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2428
            # The input type must be Variable.
2429
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2430
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2431 2432
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2433
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2434
            # support the input dtype is float16
J
joejiong 已提交
2435 2436
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2437
            F.thresholded_relu(x_fp16)
2438 2439


2440 2441 2442 2443
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2444
class TestHardSigmoid(TestActivation):
2445 2446
    def setUp(self):
        self.op_type = "hard_sigmoid"
2447 2448 2449 2450
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2451

2452 2453 2454
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2455

2456
        # Same reason as TestAbs
2457 2458 2459
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2460

2461
        out = ref_hardsigmoid(x, self.slope, self.offset)
2462

2463 2464
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2465
        self.outputs = {'Out': out}
2466

2467 2468
    def set_attrs(self):
        pass
2469

2470

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2486
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2487 2488 2489 2490
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2491
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2510
        paddle.enable_static()
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2529
            # The input type must be Variable.
2530
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2531
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2532 2533
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2534
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2535
            # support the input dtype is float16
J
joejiong 已提交
2536 2537
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2538
            F.hardsigmoid(x_fp16)
2539 2540


2541 2542 2543 2544 2545
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2546
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2547 2548
    def setUp(self):
        self.op_type = "swish"
2549 2550
        self.init_dtype()

2551
        np.random.seed(1024)
2552 2553 2554
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2555
        self.attrs = {'beta': 1.0}
2556
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2557 2558

    def test_check_grad(self):
2559 2560
        if self.dtype == np.float16:
            return
2561 2562
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2563

2564 2565 2566 2567 2568
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2569
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2570 2571 2572 2573 2574
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2575
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2605

2606
    def test_errors(self):
2607 2608
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2609
            # The input type must be Variable.
2610
            self.assertRaises(TypeError, F.swish, 1)
2611
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2612 2613
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2614
            self.assertRaises(TypeError, F.swish, x_int32)
2615
            # support the input dtype is float16
J
joejiong 已提交
2616 2617
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2618
            F.swish(x_fp16)
2619 2620


2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
2652
create_test_error_class('tan')
2653 2654


2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2674 2675 2676 2677 2678
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
2679
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
2680 2681 2682 2683
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2684

C
chengduo 已提交
2685
        def test_check_output(self):
2686
            place = core.CUDAPlace(0)
C
chengduo 已提交
2687 2688 2689
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2690

C
chengduo 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
2705
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
2706 2707
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2708
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2709
create_test_act_fp16_class(TestHardShrink)
2710
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2711 2712 2713 2714 2715
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
2716
create_test_act_fp16_class(TestTan, grad_atol=0.85)
2717
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2718
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2719
create_test_act_fp16_class(TestSin)
2720
create_test_act_fp16_class(TestSinh)
2721 2722
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2723 2724
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2725
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2726 2727
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
2728
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
2729 2730 2731
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
2732 2733 2734 2735
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
2736
create_test_act_fp16_class(TestLog10, atol=5e-2)
2737
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2738 2739
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2740
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2741 2742 2743 2744 2745
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
2746
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
2747
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
2776 2777
if __name__ == "__main__":
    unittest.main()