test_activation_op.py 69.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24
import paddle.nn as nn
25
import paddle.nn.functional as F
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
45
class TestActivation(OpTest):
Q
qijun 已提交
46 47
    def setUp(self):
        self.op_type = "exp"
48
        self.init_dtype()
49
        self.init_kernel_type()
50 51 52 53 54 55

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
56 57 58 59 60

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
61 62
        if self.dtype == np.float16:
            return
63
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
64

65
    def init_dtype(self):
66
        self.dtype = np.float64
67

68 69 70
    def init_kernel_type(self):
        pass

Q
qijun 已提交
71

72 73 74
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
75
            np_x = np.array([0.1])
76
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
77
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
78 79
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
80 81 82
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
83 84 85 86 87 88 89 90 91 92

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
93
class TestSigmoid(TestActivation):
Q
qijun 已提交
94 95
    def setUp(self):
        self.op_type = "sigmoid"
96 97 98 99 100 101 102
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
103

104 105 106
    def init_dtype(self):
        self.dtype = np.float32

107
    def test_check_grad(self):
108 109 110 111
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

112

C
chengduo 已提交
113
class TestLogSigmoid(TestActivation):
114 115
    def setUp(self):
        self.op_type = "logsigmoid"
116 117 118 119 120
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

121
        self.inputs = {'X': x}
122
        self.outputs = {'Out': out}
123 124

    def test_check_grad(self):
125 126
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
127
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
128 129


130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class TestLogSigmoidAPI(unittest.TestCase):
    # test paddle.nn.LogSigmoid, paddle.nn.functional.logsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.logsigmoid(x)
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.logsigmoid(x)
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.logsigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.logsigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.logsigmoid(x_fp16)


172
class TestTanh(TestActivation, TestParameter):
173 174
    def setUp(self):
        self.op_type = "tanh"
175 176 177 178 179 180
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
181 182

    def test_check_grad(self):
183 184
        if self.dtype == np.float16:
            return
185
        self.check_grad(['X'], 'Out')
186

187 188 189 190 191 192
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

193

W
WangXi 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12], self.dtype)
            out1 = F.tanh(x)
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanh, 1)
            # The input dtype must be float16, float32.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.tanh, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.tanh(x_fp16)


247
class TestAtan(TestActivation, TestParameter):
248 249 250 251 252 253 254 255 256 257 258 259 260
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
261
        self.check_grad(['X'], 'Out')
262

W
WuHaobo 已提交
263 264 265 266 267 268 269 270 271 272 273
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

274 275 276 277 278 279 280 281
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


425 426 427 428 429 430
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
431 432
    def setUp(self):
        self.op_type = "tanh_shrink"
433 434
        self.init_dtype()

435 436
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
437

438
        self.inputs = {'X': x}
439
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
440 441

    def test_check_grad(self):
442 443
        if self.dtype == np.float16:
            return
444
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
445

446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.tanhshrink(x_fp16)


498 499 500 501 502 503
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
504
class TestHardShrink(TestActivation):
505 506
    def setUp(self):
        self.op_type = "hard_shrink"
507 508
        self.init_dtype()

509 510
        self.threshold = 0.5
        self.set_attrs()
Z
zhupengyang 已提交
511
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
512
        out = ref_hardshrink(x, self.threshold)
513

514
        self.attrs = {'threshold': self.threshold}
515
        self.inputs = {'X': x}
516
        self.outputs = {'Out': out}
517

518 519 520
    def set_attrs(self):
        pass

521
    def test_check_grad(self):
522 523
        if self.dtype == np.float16:
            return
524
        self.check_grad(['X'], 'Out')
525 526


527 528 529 530 531
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

578
    def test_errors(self):
579
        with paddle.static.program_guard(paddle.static.Program()):
580
            # The input type must be Variable.
581
            self.assertRaises(TypeError, F.hardshrink, 1)
582
            # The input dtype must be float16, float32, float64.
583 584
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardshrink, x_int32)
585
            # support the input dtype is float16
586 587
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardshrink(x_fp16)
588 589


590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardtanh(x_fp16)


647 648 649 650 651 652 653 654
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
655 656
    def setUp(self):
        self.op_type = "softshrink"
657 658
        self.init_dtype()

659
        threshold = 0.8
660

661 662 663 664
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
665
        self.outputs = {'Out': out}
666 667

    def test_check_grad(self):
668 669
        if self.dtype == np.float16:
            return
670
        self.check_grad(['X'], 'Out')
671

672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

713
    def test_errors(self):
714
        with paddle.static.program_guard(paddle.static.Program()):
715
            # The input type must be Variable.
716
            self.assertRaises(TypeError, F.softshrink, 1)
717
            # The input dtype must be float16, float32, float64.
718 719
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softshrink, x_int32)
720
            # support the input dtype is float16
721 722
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softshrink(x_fp16)
723 724


725
class TestSqrt(TestActivation, TestParameter):
726 727
    def setUp(self):
        self.op_type = "sqrt"
728 729 730 731 732 733 734
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
735 736

    def test_check_grad(self):
737 738
        if self.dtype == np.float16:
            return
739
        self.check_grad(['X'], 'Out')
740

741

Z
zhoukunsheng 已提交
742 743 744 745 746
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
747
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
748 749 750 751 752 753 754 755 756 757 758
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
759
class TestAbs(TestActivation):
760 761
    def setUp(self):
        self.op_type = "abs"
762 763
        self.init_dtype()

764
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
765
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
766
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
767
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
768 769
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
770 771 772 773
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
774 775

    def test_check_grad(self):
776 777
        if self.dtype == np.float16:
            return
778
        self.check_grad(['X'], 'Out')
779

780

C
chengduo 已提交
781
class TestCeil(TestActivation):
D
dzhwinter 已提交
782 783
    def setUp(self):
        self.op_type = "ceil"
784 785
        self.init_dtype()

Z
zhupengyang 已提交
786
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
787 788 789 790
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
791

D
dzhwinter 已提交
792
    # The same reason with TestFloor
C
chengduo 已提交
793
    def test_check_grad(self):
794 795 796
        pass


C
chengduo 已提交
797
class TestFloor(TestActivation):
D
dzhwinter 已提交
798 799
    def setUp(self):
        self.op_type = "floor"
800 801
        self.init_dtype()

Z
zhupengyang 已提交
802
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
803 804 805 806
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
807

D
dzhwinter 已提交
808
    # the gradient on floor, ceil, round is undefined.
809
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
810 811
    # The same reason with TestFloor
    def test_check_grad(self):
812 813 814
        pass


C
chengduo 已提交
815
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
816 817
    def setUp(self):
        self.op_type = "cos"
818 819
        self.init_dtype()

Z
zhupengyang 已提交
820
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
821 822 823 824
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
825 826

    def test_check_grad(self):
827 828
        if self.dtype == np.float16:
            return
829
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
830

831

832 833 834 835 836
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
837
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
838 839 840 841 842 843 844 845
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
846
        self.check_grad(['X'], 'Out')
847 848


849
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
850 851
    def setUp(self):
        self.op_type = "sin"
852 853
        self.init_dtype()

Z
zhupengyang 已提交
854
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
855 856 857 858
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
859 860

    def test_check_grad(self):
861 862
        if self.dtype == np.float16:
            return
863
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
864 865


866 867 868 869 870
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
871
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
872 873 874 875 876 877 878 879
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
880
        self.check_grad(['X'], 'Out')
881 882


C
chengduo 已提交
883
class TestRound(TestActivation):
D
dzhwinter 已提交
884 885
    def setUp(self):
        self.op_type = "round"
886 887
        self.init_dtype()

Z
zhupengyang 已提交
888
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
889 890 891 892
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
893

C
chengduo 已提交
894
    def test_check_grad(self):
895 896 897
        pass


C
chengduo 已提交
898
class TestRelu(TestActivation):
899
    def setUp(self):
Q
qijun 已提交
900
        self.op_type = "relu"
K
Kexin Zhao 已提交
901 902 903
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
904 905
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
906 907
        out = np.maximum(x, 0)

908
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
909
        self.outputs = {'Out': out}
910 911

    def test_check_grad(self):
K
Kexin Zhao 已提交
912 913
        if self.dtype == np.float16:
            return
914
        self.check_grad(['X'], 'Out')
A
Adam 已提交
915 916


917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.relu(x)
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu(x)
        m = paddle.nn.ReLU()
        out2 = m(x)
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

947
    def test_errors(self):
948
        with paddle.static.program_guard(paddle.static.Program()):
949
            # The input type must be Variable.
950
            self.assertRaises(TypeError, F.relu, 1)
951
            # The input dtype must be float16, float32, float64.
952 953
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.relu, x_int32)
954
            # support the input dtype is float16
955 956
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.relu(x_fp16)
957 958


959 960 961 962 963 964
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
965
class TestLeakyRelu(TestActivation):
966 967 968
    def get_alpha(self):
        return 0.02

A
Adam 已提交
969 970 971
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
972
        alpha = self.get_alpha()
A
Adam 已提交
973

974
        np.random.seed(10)
A
Adam 已提交
975 976
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
977 978
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
979

980
        self.inputs = {'X': x}
A
Adam 已提交
981
        self.outputs = {'Out': out}
982
        self.attrs = {'alpha': alpha}
A
Adam 已提交
983 984 985 986

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
987
        self.check_grad(['X'], 'Out')
988 989


990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1052
    def test_errors(self):
1053
        with paddle.static.program_guard(paddle.static.Program()):
1054
            # The input type must be Variable.
1055
            self.assertRaises(TypeError, F.leaky_relu, 1)
1056
            # The input dtype must be float16, float32, float64.
1057 1058 1059 1060 1061
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.leaky_relu(x_fp16)
1062 1063


1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1074 1075 1076
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1077 1078 1079
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1080

1081
        self.inputs = {'X': x}
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
1096
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1097
        out = gelu(x, approximate)
C
Clementine 已提交
1098

1099
        self.inputs = {'X': x}
C
Clementine 已提交
1100
        self.outputs = {'Out': out}
1101
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1102 1103 1104 1105

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1106
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1107 1108


1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.gelu(x_fp16)


C
chengduo 已提交
1158
class TestBRelu(TestActivation):
1159 1160
    def setUp(self):
        self.op_type = "brelu"
1161 1162
        self.init_dtype()

Z
zhupengyang 已提交
1163
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1164 1165
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1166 1167
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1168
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1169 1170 1171
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1172 1173 1174

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1175
        self.outputs = {'Out': t}
1176 1177

    def test_check_grad(self):
1178 1179
        if self.dtype == np.float16:
            return
1180
        self.check_grad(['X'], 'Out')
1181

1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1197 1198 1199 1200 1201 1202 1203
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1204
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1205
    def setUp(self):
1206
        self.op_type = "relu6"
1207 1208
        self.init_dtype()

Z
zhupengyang 已提交
1209
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1210
        x[np.abs(x) < 0.005] = 0.02
1211
        out = ref_relu6(x)
1212

1213 1214
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1215
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1216

1217 1218 1219
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1220
        self.check_grad(['X'], 'Out')
1221 1222


1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1263
    def test_errors(self):
1264
        with paddle.static.program_guard(paddle.static.Program()):
1265
            # The input type must be Variable.
1266
            self.assertRaises(TypeError, F.relu6, 1)
1267
            # The input dtype must be float16, float32, float64.
1268 1269
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.relu6, x_int32)
1270
            # support the input dtype is float16
1271 1272
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.relu6(x_fp16)
1273 1274


H
huangjun12 已提交
1275 1276 1277 1278 1279
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
1280
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1296
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1297 1298


1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
1312
class TestSoftRelu(TestActivation):
1313 1314
    def setUp(self):
        self.op_type = "soft_relu"
1315 1316 1317
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1318
        threshold = 2.0
Q
qijun 已提交
1319 1320
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1321
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1322 1323 1324
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1325 1326 1327 1328 1329
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1330 1331

    def test_check_grad(self):
1332 1333
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1334
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1335

1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1350 1351 1352 1353 1354
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1355
class TestELU(TestActivation):
1356 1357
    def setUp(self):
        self.op_type = "elu"
1358 1359
        self.init_dtype()

Z
zhupengyang 已提交
1360
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1361
        alpha = 1.
1362
        out = elu(x, alpha)
1363 1364 1365 1366
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1367
        self.outputs = {'Out': out}
1368 1369

    def test_check_grad(self):
1370 1371
        if self.dtype == np.float16:
            return
1372
        self.check_grad(['X'], 'Out')
1373 1374


1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.elu(x)
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.elu(x)
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.elu(x, 0.2)
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1412
    def test_errors(self):
1413 1414 1415 1416 1417 1418 1419 1420 1421
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.elu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.elu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.elu(x_fp16)
1422 1423


C
chengduo 已提交
1424
class TestReciprocal(TestActivation):
Q
qijun 已提交
1425 1426
    def setUp(self):
        self.op_type = "reciprocal"
1427 1428 1429 1430 1431 1432 1433
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1434 1435

    def test_check_grad(self):
1436 1437
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1438
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1439 1440


C
chengduo 已提交
1441
class TestLog(TestActivation):
Q
qijun 已提交
1442 1443
    def setUp(self):
        self.op_type = "log"
1444 1445 1446 1447 1448 1449 1450
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1451 1452

    def test_check_grad(self):
1453 1454
        if self.dtype == np.float16:
            return
1455
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1495 1496 1497
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1498
        expected_res = np.log1p(input_x)
1499
        self.assertTrue(np.allclose(res1, expected_res))
1500 1501 1502 1503 1504 1505 1506 1507

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1508
        self.assertTrue(np.allclose(np_z, z_expected))
1509 1510


C
chengduo 已提交
1511
class TestSquare(TestActivation):
Q
qijun 已提交
1512 1513
    def setUp(self):
        self.op_type = "square"
1514 1515 1516 1517 1518 1519 1520
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1521 1522

    def test_check_grad(self):
1523 1524
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1525
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1526

1527

C
chengduo 已提交
1528
class TestPow(TestActivation):
1529 1530
    def setUp(self):
        self.op_type = "pow"
1531 1532 1533 1534 1535 1536
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1537
        self.attrs = {'factor': 3.0}
1538
        self.outputs = {'Out': out}
1539 1540

    def test_check_grad(self):
1541 1542
        if self.dtype == np.float16:
            return
1543
        self.check_grad(['X'], 'Out')
1544

1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1568
        self.check_grad(['X'], 'Out')
1569 1570 1571 1572 1573

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1574 1575 1576 1577 1578
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1579 1580 1581 1582 1583

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1584 1585 1586
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1587 1588

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1589
        res_1, res_2, res, res_6 = exe.run(
1590 1591
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1592
            fetch_list=[out_1, out_2, res, out_6])
1593 1594 1595

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1596
        assert np.array_equal(res_6, np.power(input, 3))
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1621

C
chengduo 已提交
1622
class TestSTanh(TestActivation):
1623 1624
    def setUp(self):
        self.op_type = "stanh"
1625 1626 1627
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1628 1629
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1630 1631 1632
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1633
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1634
        self.outputs = {'Out': out}
1635

Q
qijun 已提交
1636
    def test_check_grad(self):
1637 1638
        if self.dtype == np.float16:
            return
1639
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1640

1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


1655 1656 1657 1658 1659 1660 1661
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
1662
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1663 1664
    def setUp(self):
        self.op_type = "softplus"
1665 1666
        self.init_dtype()

1667 1668
        beta = 2
        threshold = 15
1669

1670 1671 1672 1673
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
1674
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1675 1676

    def test_check_grad(self):
1677 1678
        if self.dtype == np.float16:
            return
1679
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1680

1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
1740
class TestSoftsign(TestActivation):
1741 1742
    def setUp(self):
        self.op_type = "softsign"
1743 1744
        self.init_dtype()

1745 1746 1747
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
1748
        self.outputs = {'Out': out}
1749 1750

    def test_check_grad(self):
1751 1752
        if self.dtype == np.float16:
            return
1753
        self.check_grad(['X'], 'Out')
1754 1755


1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softsign(x_fp16)


C
chengduo 已提交
1807
class TestThresholdedRelu(TestActivation):
1808 1809
    def setUp(self):
        self.op_type = "thresholded_relu"
1810 1811
        self.init_dtype()

1812
        threshold = 0.25
Z
zhupengyang 已提交
1813
        self.delta = 0.005
1814
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1815 1816

        # Same reason as TestAbs
Z
zhupengyang 已提交
1817
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1818
        out = (X > threshold) * X
1819

1820
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1821
        self.attrs = {'threshold': threshold}
1822
        self.outputs = {'Out': out}
1823 1824

    def test_check_grad(self):
1825 1826
        if self.dtype == np.float16:
            return
1827
        self.check_grad(['X'], 'Out')
1828 1829


1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1843
class TestHardSigmoid(TestActivation):
1844 1845
    def setUp(self):
        self.op_type = "hard_sigmoid"
1846 1847
        self.init_dtype()

Z
zhupengyang 已提交
1848
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1849 1850 1851 1852 1853
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1854 1855
        self.delta = 0.005

1856
        # Same reason as TestAbs
Z
zhupengyang 已提交
1857 1858
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1859 1860

        temp = X * slope + offset
1861 1862 1863 1864
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1865 1866

    def test_check_grad(self):
1867 1868
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1869
        self.check_grad(['X'], 'Out')
1870

1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1885
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1886 1887
    def setUp(self):
        self.op_type = "swish"
1888 1889 1890 1891 1892 1893 1894 1895 1896
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1897 1898

    def test_check_grad(self):
1899 1900
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1901
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1902

1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
1979

C
chengduo 已提交
1980
        def test_check_output(self):
1981
            place = core.CUDAPlace(0)
C
chengduo 已提交
1982 1983 1984
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
1985

C
chengduo 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2002
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2003
create_test_act_fp16_class(TestHardShrink)
2004
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2005 2006 2007 2008 2009
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
2010
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2011
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2012
create_test_act_fp16_class(TestSin)
2013
create_test_act_fp16_class(TestSinh)
2014 2015
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2016 2017
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2018
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2019 2020 2021 2022 2023 2024
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
2025
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2026 2027
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2028
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2029 2030 2031 2032 2033 2034
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
2035
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2036

Q
qijun 已提交
2037 2038
if __name__ == "__main__":
    unittest.main()