Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5824d850
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5824d850
编写于
9月 14, 2017
作者:
Q
qijun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add activation operators and python unittests
上级
dadace31
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
626 addition
and
20 deletion
+626
-20
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+209
-5
paddle/operators/activation_op.cu
paddle/operators/activation_op.cu
+82
-0
paddle/operators/activation_op.h
paddle/operators/activation_op.h
+170
-11
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+0
-2
python/paddle/v2/framework/tests/op_test.py
python/paddle/v2/framework/tests/op_test.py
+1
-1
python/paddle/v2/framework/tests/test_activation_op.py
python/paddle/v2/framework/tests/test_activation_op.py
+164
-1
未找到文件。
paddle/operators/activation_op.cc
浏览文件 @
5824d850
...
...
@@ -46,7 +46,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddOutput
(
"Y"
,
"Output of Sigmoid operator"
);
AddComment
(
"Sigmoid activation operator"
);
AddComment
(
"Sigmoid activation operator
, sigmoid = 1 / (1 + exp(-x))
"
);
}
};
...
...
@@ -56,7 +56,7 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Exp operator"
);
AddOutput
(
"Y"
,
"Output of Exp operator"
);
AddComment
(
"Exp activation operator"
);
AddComment
(
"Exp activation operator
, exp(x) = e^x
"
);
}
};
...
...
@@ -66,7 +66,129 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Relu operator"
);
AddOutput
(
"Y"
,
"Output of Relu operator"
);
AddComment
(
"Relu activation operator"
);
AddComment
(
"Relu activation operator, relu(x) = max(x, 0)"
);
}
};
class
TanhOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
TanhOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddOutput
(
"Y"
,
"Output of Tanh operator"
);
AddComment
(
"Tanh activation operator, tanh = (exp(x) - exp(-x)) / (exp(x) + "
"exp(-x))"
);
}
};
class
SqrtOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SqrtOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddOutput
(
"Y"
,
"Output of Sqrt operator"
);
AddComment
(
"Sqrt activation operator, sqrt(x) = x^(1/2)"
);
}
};
class
AbsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
AbsOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Abs operator"
);
AddOutput
(
"Y"
,
"Output of Abs operator"
);
AddComment
(
"Abs activation operator, abs(x) = |x|"
);
}
};
class
ReciprocalOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReciprocalOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddOutput
(
"Y"
,
"Output of Reciprocal operator"
);
AddComment
(
"Reciprocal activation operator, reciprocal(x) = 1 / x"
);
}
};
class
LogOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LogOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Log operator"
);
AddOutput
(
"Y"
,
"Output of Log operator"
);
AddComment
(
"Log activation operator, log(x) = natural logarithm of x"
);
}
};
class
SquareOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SquareOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Square operator"
);
AddOutput
(
"Y"
,
"Output of Square operator"
);
AddComment
(
"Square activation operator, square(x) = x^2"
);
}
};
template
<
typename
AttrType
>
class
BReluOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
BReluOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of BRelu operator"
);
AddOutput
(
"Y"
,
"Output of BRelu operator"
);
AddComment
(
"BRelu activation operator, brelu = max(min(x, t_min), t_max)"
);
AddAttr
<
AttrType
>
(
"t_min"
,
"The min marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0
));
AddAttr
<
AttrType
>
(
"t_max"
,
"The max marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
24
));
}
};
template
<
typename
AttrType
>
class
SoftReluOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SoftReluOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of SoftRelu operator"
);
AddOutput
(
"Y"
,
"Output of SoftRelu operator"
);
AddComment
(
"SoftRelu activation operator, soft_relu = log(1 + exp(max(min(x, "
"threshold), threshold)))"
);
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
40
));
}
};
template
<
typename
AttrType
>
class
PowOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
PowOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Pow operator"
);
AddOutput
(
"Y"
,
"Output of Pow operator"
);
AddComment
(
"Pow activation operator, pow(x, factor) = x^factor"
);
AddAttr
<
AttrType
>
(
"factor"
,
"The exponential factor of Pow"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1
));
}
};
template
<
typename
AttrType
>
class
STanhOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
STanhOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of STanh operator"
);
AddOutput
(
"Y"
,
"Output of STanh operator"
);
AddComment
(
"STanh activation operator, stanh = b * tanh(a * x)"
);
AddAttr
<
AttrType
>
(
"scale_a"
,
"The scale parameter of a for the input"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
2
/
3
));
AddAttr
<
AttrType
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.7159
));
}
};
...
...
@@ -78,10 +200,10 @@ REGISTER_OP(sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, sigmoid_grad,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sigmoid
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SigmoidFunctor
>
);
ops
::
SigmoidFunctor
<
float
>
>
);
REGISTER_OP_CPU_KERNEL
(
sigmoid_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SigmoidGradFunctor
>
);
ops
::
SigmoidGradFunctor
<
float
>
>
);
REGISTER_OP
(
exp
,
ops
::
ActivationOp
,
ops
::
ExpOpMaker
,
exp_grad
,
ops
::
ActivationOpGrad
);
...
...
@@ -100,3 +222,85 @@ REGISTER_OP_CPU_KERNEL(relu,
REGISTER_OP_CPU_KERNEL
(
relu_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReluGradFunctor
<
float
>>
);
REGISTER_OP
(
tanh
,
ops
::
ActivationOp
,
ops
::
TanhOpMaker
,
tanh_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
tanh
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
TanhFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
tanh_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
TanhGradFunctor
<
float
>>
);
REGISTER_OP
(
sqrt
,
ops
::
ActivationOp
,
ops
::
SqrtOpMaker
,
sqrt_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sqrt
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SqrtFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
sqrt_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SqrtGradFunctor
<
float
>>
);
REGISTER_OP
(
abs
,
ops
::
ActivationOp
,
ops
::
AbsOpMaker
,
abs_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
abs
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
AbsFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
abs_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
AbsGradFunctor
>
);
REGISTER_OP
(
reciprocal
,
ops
::
ActivationOp
,
ops
::
ReciprocalOpMaker
,
reciprocal_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
reciprocal
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReciprocalFunctor
<
float
>>
);
REGISTER_OP_CPU_KERNEL
(
reciprocal_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReciprocalGradFunctor
<
float
>>
);
REGISTER_OP
(
log
,
ops
::
ActivationOp
,
ops
::
LogOpMaker
,
log_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
log
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
LogFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
log_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
LogGradFunctor
<
float
>>
);
REGISTER_OP
(
square
,
ops
::
ActivationOp
,
ops
::
SquareOpMaker
,
square_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
square
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SquareFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
square_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SquareGradFunctor
<
float
>>
);
REGISTER_OP
(
brelu
,
ops
::
ActivationOp
,
ops
::
BReluOpMaker
<
float
>
,
brelu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
brelu
,
ops
::
BReluKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
brelu_grad
,
ops
::
BReluGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
soft_relu
,
ops
::
ActivationOp
,
ops
::
SoftReluOpMaker
<
float
>
,
soft_relu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
soft_relu
,
ops
::
SoftReluKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
soft_relu_grad
,
ops
::
SoftReluGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
pow
,
ops
::
ActivationOp
,
ops
::
PowOpMaker
<
float
>
,
pow_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
pow
,
ops
::
PowKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
pow_grad
,
ops
::
PowGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
stanh
,
ops
::
ActivationOp
,
ops
::
STanhOpMaker
<
float
>
,
stanh_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
stanh
,
ops
::
STanhKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
stanh_grad
,
ops
::
STanhGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/activation_op.cu
浏览文件 @
5824d850
...
...
@@ -36,3 +36,85 @@ REGISTER_OP_GPU_KERNEL(relu,
REGISTER_OP_GPU_KERNEL
(
relu_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReluGradFunctor
<
float
>>
);
REGISTER_OP
(
tanh
,
ops
::
ActivationOp
,
ops
::
TanhOpMaker
,
tanh_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
tanh
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
TanhFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
tanh_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
TanhGradFunctor
<
float
>>
);
REGISTER_OP
(
sqrt
,
ops
::
ActivationOp
,
ops
::
SqrtOpMaker
,
sqrt_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
sqrt
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SqrtFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
sqrt_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SqrtGradFunctor
<
float
>>
);
REGISTER_OP
(
abs
,
ops
::
ActivationOp
,
ops
::
AbsOpMaker
,
abs_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
abs
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
AbsFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
abs_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
AbsGradFunctor
<
float
>>
);
REGISTER_OP
(
reciprocal
,
ops
::
ActivationOp
,
ops
::
ReciprocalOpMaker
,
reciprocal_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
reciprocal
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReciprocalFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
reciprocal_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReciprocalGradFunctor
<
float
>>
);
REGISTER_OP
(
log
,
ops
::
ActivationOp
,
ops
::
LogOpMaker
,
log_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
log
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
LogFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
log_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
LogGradFunctor
<
float
>>
);
REGISTER_OP
(
square
,
ops
::
ActivationOp
,
ops
::
SquareOpMaker
,
square_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
square
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
squareFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
square_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SquareGradFunctor
<
float
>>
);
REGISTER_OP
(
brelu
,
ops
::
ActivationOp
,
ops
::
BReluOpMaker
<
float
>
,
brelu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
brelu
,
ops
::
BReluKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
brelu_grad
,
ops
::
BReluGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP
(
soft_relu
,
ops
::
ActivationOp
,
ops
::
SoftReluOpMaker
<
float
>
,
soft_relu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
soft_relu
,
ops
::
SoftReluKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
soft_relu_grad
,
ops
::
SoftReluGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP
(
pow
,
ops
::
ActivationOp
,
ops
::
PowOpMaker
<
float
>
,
pow_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
pow
,
ops
::
PowKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
pow_grad
,
ops
::
PowGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP
(
stanh
,
ops
::
ActivationOp
,
ops
::
STanhOpMaker
<
float
>
,
stanh_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_GPU_KERNEL
(
stanh
,
ops
::
STanhKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
stanh_grad
,
ops
::
STanhGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
\ No newline at end of file
paddle/operators/activation_op.h
浏览文件 @
5824d850
...
...
@@ -55,19 +55,20 @@ class ActivationGradKernel : public framework::OpKernel {
}
};
// sigmoid
= 1 / (1 + exp(-x
)
// sigmoid
(x) = 1 / (1 + exp(-x)
)
template
<
typename
T
>
struct
SigmoidFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
y
.
device
(
d
)
=
1.
/
(
1.
+
(
-
x
).
exp
());
y
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
-
x
).
exp
());
}
};
template
<
typename
T
>
struct
SigmoidGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
dy
*
y
*
(
1.
-
y
);
dx
.
device
(
d
)
=
dy
*
y
*
(
static_cast
<
T
>
(
1
)
-
y
);
}
};
...
...
@@ -103,7 +104,7 @@ struct ReluGradFunctor {
}
};
// tanh = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
// tanh
(x)
= (exp(x) - exp(-x)) / (exp(x) + exp(-x))
struct
TanhFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
...
...
@@ -115,7 +116,7 @@ template <typename T>
struct
TanhGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
dy
*
(
T
(
1
)
-
y
*
y
);
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
-
y
*
y
);
}
};
...
...
@@ -131,7 +132,7 @@ template <typename T>
struct
SqrtGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
const
T
y_conj
=
Eigen
::
numext
::
conj
(
y
);
const
Y
y_conj
=
Eigen
::
numext
::
conj
(
y
);
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dy
/
y_conj
;
}
};
...
...
@@ -144,19 +145,27 @@ struct AbsFunctor {
}
};
struct
AbsGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
dy
*
x
.
sign
();
}
};
// reciprocal(x) = 1 / x
template
<
typename
T
>
struct
ReciprocalFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
y
.
device
(
d
)
=
1.
/
x
;
y
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
x
;
}
};
template
<
typename
T
>
struct
ReciprocalGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
dy
*
(
-
1.0
)
*
y
*
y
;
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
-
1
)
*
y
*
y
;
}
};
...
...
@@ -168,10 +177,11 @@ struct LogFunctor {
}
};
template
<
typename
T
>
struct
LogGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
dy
*
(
1.
/
x
);
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
/
x
);
}
};
...
...
@@ -181,12 +191,161 @@ struct SquareFunctor {
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
y
.
device
(
d
)
=
x
.
square
();
}
}
}
;
template
<
typename
T
>
struct
SquareGradFunctor
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
dy
*
2
*
x
;
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
2
)
*
x
;
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
BReluKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
t_min
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_min"
));
auto
t_max
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_max"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
y
.
device
(
place
)
=
x
.
cwiseMax
(
t_min
).
cwiseMin
(
t_max
);
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
BReluGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
t_min
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_min"
));
auto
t_max
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_max"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
dx
.
device
(
place
)
=
dy
*
((
x
>
t_min
)
*
(
x
<
t_max
)).
template
cast
<
T
>();
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
SoftReluKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
threshold
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"threshold"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
temp
=
x
.
cwiseMax
(
-
threshold
).
cwiseMin
(
threshold
).
eval
();
y
.
device
(
place
)
=
(
static_cast
<
T
>
(
1
)
+
temp
.
exp
()).
log
();
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
SoftReluGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
threshold
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"threshold"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
temp
=
((
x
>
-
threshold
)
*
(
x
<
threshold
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
place
)
=
dy
*
(
static_cast
<
T
>
(
1
)
-
(
-
y
).
exp
())
*
temp
;
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
PowKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
factor
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"factor"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
y
.
device
(
place
)
=
x
.
pow
(
factor
);
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
PowGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
factor
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"factor"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
dx
.
device
(
place
)
=
dy
*
factor
*
x
.
pow
(
factor
-
static_cast
<
T
>
(
1
));
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
STanhKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
scale_a
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_a"
));
auto
scale_b
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_b"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
y
.
device
(
place
)
=
scale_b
*
(
scale_a
*
x
).
tanh
();
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
STanhGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
scale_a
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_a"
));
auto
scale_b
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_b"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
temp
=
(
scale_a
*
x
).
tanh
()
*
(
scale_a
*
x
).
tanh
();
dx
.
device
(
place
)
=
dy
*
scale_a
*
scale_b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
}
};
...
...
paddle/pybind/pybind.cc
浏览文件 @
5824d850
...
...
@@ -55,8 +55,6 @@ USE_OP(squared_l2_distance);
USE_OP
(
sum
);
USE_OP
(
reshape
);
USE_OP
(
sigmoid
);
USE_OP
(
exp
);
USE_OP
(
relu
);
namespace
paddle
{
namespace
framework
{
...
...
python/paddle/v2/framework/tests/op_test.py
浏览文件 @
5824d850
...
...
@@ -196,7 +196,7 @@ class OpTest(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
actual
,
expect
,
atol
=
1e-05
),
"output name: "
+
out_name
+
"has diff"
)
"output name: "
+
out_name
+
"
has diff"
)
def
check_output
(
self
):
places
=
[
core
.
CPUPlace
()]
...
...
python/paddle/v2/framework/tests/test_activation_op.py
浏览文件 @
5824d850
...
...
@@ -21,7 +21,9 @@ class TestExp(OpTest):
class
TestRelu
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"relu"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)}
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
x
=
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Y'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
def
test_check_output
(
self
):
...
...
@@ -42,6 +44,167 @@ class TestSigmoid(OpTest):
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.008
)
class
TestTanh
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"tanh"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestSqrt
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sqrt"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestAbs
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"abs"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
x
=
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Y'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestReciprocal
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reciprocal"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.01
)
class
TestLog
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"log"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
log
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestSquare
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"square"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
square
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestBRelu
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"brelu"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
x
=
2
*
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
self
.
inputs
=
{
'X'
:
x
}
t_min
=
0
t_max
=
4
self
.
attrs
=
{
't_min'
:
t_min
,
't_max'
:
t_max
}
t
=
np
.
copy
(
x
)
t
[
t
<
t_min
]
=
t_min
t
[
t
>
t_max
]
=
t_max
self
.
outputs
=
{
'Y'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.02
)
class
TestSoftRelu
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"soft_relu"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
x
=
2
*
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
self
.
inputs
=
{
'X'
:
x
}
threshold
=
4
self
.
attrs
=
{
'threshold'
:
threshold
}
t
=
np
.
copy
(
x
)
t
[
t
<
-
threshold
]
=
-
threshold
t
[
t
>
threshold
]
=
threshold
self
.
outputs
=
{
'Y'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.02
)
class
TestPow
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
attrs
=
{
'factor'
:
3
}
self
.
outputs
=
{
'Y'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.02
)
class
TestSTanh
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"stanh"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
scale_a
=
2.0
/
3.0
scale_b
=
1.7159
self
.
attrs
=
{
'scale_a'
:
scale_a
,
'scale_b'
:
scale_b
}
self
.
outputs
=
{
'Y'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录