analysis_config.cc 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18

19 20
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
21
#include "paddle/fluid/inference/utils/table_printer.h"
22
#include "paddle/fluid/platform/cpu_info.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
24
#include "paddle/fluid/platform/enforce.h"
25
#include "paddle/utils/string/split.h"
26

27 28 29 30
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

31
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
32 33 34
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

35
namespace paddle {
W
wanghuancoder 已提交
36 37
struct MkldnnQuantizerConfig;

38
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
39
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
40
extern const std::vector<std::string> kLiteSubgraphPasses;
41

42
PassStrategy *AnalysisConfig::pass_builder() const {
43 44 45 46
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
47 48
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
49 50
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
51 52 53
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
54 55 56 57 58 59 60 61 62 63 64 65
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

66 67 68
  return pass_builder_.get();
}

69
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
70
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
71 72

  Update();
73
}
74 75
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
76 77
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
78 79

  Update();
80
}
81 82
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
83 84
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
85 86

  Update();
87
}
88 89
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
90
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
91 92
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
93
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
94
  gpu_device_id_ = device_id;
95
#else
Y
Yan Chunwei 已提交
96
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
97 98
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
99 100 101

  Update();
}
102

103
void AnalysisConfig::SetExecStream(void *stream) {
W
Wilber 已提交
104 105 106
  PADDLE_ENFORCE_NOT_NULL(
      stream,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
107 108 109 110 111 112
  exec_stream_ = stream;
  use_external_stream_ = true;
  Update();
}

void *AnalysisConfig::GetExecStream() const {
W
Wilber 已提交
113 114 115
  PADDLE_ENFORCE_NOT_NULL(
      exec_stream_,
      platform::errors::InvalidArgument("`stream` should not be nullptr"));
116 117 118 119 120 121 122
  return exec_stream_;
}

bool AnalysisConfig::external_stream_enabled() const {
  return use_external_stream_;
}

123
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
124 125 126
  use_gpu_ = false;

  Update();
127 128
}

129 130 131 132 133 134
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
135 136 137 138
void AnalysisConfig::EnableXpu(int l3_workspace_size,
                               bool locked,
                               bool autotune,
                               const std::string &autotune_file,
W
Wilber 已提交
139 140
                               const std::string &precision,
                               bool adaptive_seqlen) {
141 142
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
143 144 145 146 147
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
148 149 150
  Update();
}

151
void AnalysisConfig::SetXpuDeviceId(int device_id) {
W
Wilber 已提交
152 153
  PADDLE_ENFORCE_EQ(use_xpu_,
                    true,
154 155 156 157 158 159
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
160 161 162 163 164 165 166 167 168 169 170
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
171

172 173 174 175 176 177 178 179 180 181 182 183 184
void AnalysisConfig::EnableCustomDevice(const std::string &device_type,
                                        int device_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  use_custom_device_ = true;
  custom_device_id_ = device_id;
  custom_device_type_ = device_type;
#else
  LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()";
  use_custom_device_ = false;
#endif
  Update();
}

W
Wilber 已提交
185 186
void AnalysisConfig::EnableIpu(int ipu_device_num,
                               int ipu_micro_batch_size,
187 188
                               bool ipu_enable_pipelining,
                               int ipu_batches_per_step) {
J
jianghaicheng 已提交
189 190 191
  enable_ir_optim_ = true;

  use_ipu_ = true;
192 193
  ipu_device_num_ = ipu_device_num;
  ipu_micro_batch_size_ = ipu_micro_batch_size;
J
jianghaicheng 已提交
194 195
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
196 197 198 199

  Update();
}

W
Wilber 已提交
200 201
void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16,
                                  int ipu_replica_num,
202 203 204 205 206 207
                                  float ipu_available_memory_proportion,
                                  bool ipu_enable_half_partial) {
  ipu_enable_fp16_ = ipu_enable_fp16;
  ipu_replica_num_ = ipu_replica_num;
  ipu_available_memory_proportion_ = ipu_available_memory_proportion;
  ipu_enable_half_partial_ = ipu_enable_half_partial;
J
jianghaicheng 已提交
208 209 210

  Update();
}
W
Wilber 已提交
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
void AnalysisConfig::SetIpuCustomInfo(
    const std::vector<std::vector<std::string>> &ipu_custom_ops_info,
    const std::map<std::string, bool> &ipu_custom_patterns) {
  ipu_custom_ops_info_ = ipu_custom_ops_info;
  for (auto iter = ipu_custom_patterns.begin();
       iter != ipu_custom_patterns.end();
       iter++) {
    if (iter->second == true) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "True"});
    } else if (iter->second == false) {
      ipu_custom_patterns_.push_back(
          std::vector<std::string>{iter->first, "False"});
    }
  }

  Update();
}

void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
  std::ifstream fin(config_path, std::ios::in);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()),
      true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_path));
  std::string line;
  while (std::getline(fin, line)) {
    // remove all space
    line.erase(std::remove(line.begin(), line.end(), ' '), line.end());

    std::string key;
    std::string value;
    std::istringstream stream(line);
    // Split string to key and value based on the first `,`
    std::getline(stream, key, ',');
    std::getline(stream, value);

    auto string2bool = [](std::string s) {
      std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) {
        return ::tolower(c);
      });
      return s == "true" || s == "1";
    };

    // ipu_custom_ops_info:
    // [[paddle_op_name, popart_op_name, domain, version], [paddle_op_name,
    // popart_op_name, domain, version]...]
    // ipu_custom_patterns:
    // [[paddle_op_name, enable_pattern], [paddle_op_name, enable_pattern]...]
    auto string2vector = [](std::string s) {
      std::vector<std::vector<std::string>> custom_info;
      s.erase(0, 1);
      s.pop_back();

      std::string one;
      std::istringstream s_stream(s);
      while (std::getline(s_stream, one, ']')) {
        if (!one.empty()) {
          // remove `[`
          one.erase(0, 1);
          custom_info.push_back(paddle::string::Split(one, ','));
        }
      }
      return custom_info;
    };

    if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "invalid key {} in IPU config", key));
    }
    switch (ipu_config_mapper_.at(key)) {
      case ipu_config_code::ipu_device_num:
        ipu_device_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_micro_batch_size:
        ipu_micro_batch_size_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_pipelining:
        ipu_enable_pipelining_ = string2bool(value);
        break;
      case ipu_config_code::ipu_batches_per_step:
        ipu_batches_per_step_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_enable_fp16:
        ipu_enable_fp16_ = string2bool(value);
        break;
      case ipu_config_code::ipu_replica_num:
        ipu_replica_num_ = std::stoi(value);
        break;
      case ipu_config_code::ipu_available_memory_proportion:
        ipu_available_memory_proportion_ = std::stof(value);
        break;
      case ipu_config_code::ipu_enable_half_partial:
        ipu_enable_half_partial_ = string2bool(value);
        break;
      case ipu_config_code::ipu_custom_ops_info:
        ipu_custom_ops_info_ = string2vector(value);
        break;
      case ipu_config_code::ipu_custom_patterns:
        ipu_custom_patterns_ = string2vector(value);
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "invalid key {} in IPU config", key));
        break;
    }
  }

  Update();
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void AnalysisConfig::EnableONNXRuntime() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  use_onnxruntime_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()";
  use_onnxruntime_ = false;
#endif

  Update();
}

void AnalysisConfig::DisableONNXRuntime() {
  use_onnxruntime_ = false;
  Update();
}

void AnalysisConfig::EnableORTOptimization() {
#ifdef PADDLE_WITH_ONNXRUNTIME
  enable_ort_optimization_ = true;
#else
  LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()";
  enable_ort_optimization_ = false;
#endif

  Update();
}

353
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
354 355 356 357 358 359
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
360

361
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
362 363
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
364
  CP_MEMBER(calibration_file_path_);
365

366
  CP_MEMBER(use_fc_padding_);
367
  // GPU related.
368
  CP_MEMBER(use_gpu_);
369 370
  CP_MEMBER(use_external_stream_);
  CP_MEMBER(exec_stream_);
371
  CP_MEMBER(use_cudnn_);
372
  CP_MEMBER(gpu_device_id_);
373
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
374

375 376 377
  // Mixed related.
  CP_MEMBER(mixed_black_list_);

Y
Yan Chunwei 已提交
378
  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
379
  // TensorRT related.
380 381 382 383
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
384
  CP_MEMBER(tensorrt_precision_mode_);
385
  CP_MEMBER(trt_disabled_ops_);
386 387
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
388
  CP_MEMBER(trt_use_static_engine_);
389
  CP_MEMBER(trt_use_calib_mode_);
390
  CP_MEMBER(trt_use_varseqlen_);
391
  CP_MEMBER(trt_with_interleaved_);
392 393
  CP_MEMBER(tensorrt_transformer_posid_);
  CP_MEMBER(tensorrt_transformer_maskid_);
394 395 396 397
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
398
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
399 400 401
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
D
denglin-github 已提交
402 403 404 405 406 407 408
  CP_MEMBER(dlnne_max_batchsize_);
  CP_MEMBER(dlnne_use_static_batch_);
  CP_MEMBER(dlnne_weight_share_mode_);
  CP_MEMBER(dlnne_use_calib_mode_);
  CP_MEMBER(dlnne_precision_mode_);
  CP_MEMBER(dlnne_disable_nodes_by_outputs_);
  CP_MEMBER(dlnne_input_shape_dict_);
S
Sylwester Fraczek 已提交
409
  // MKLDNN related.
410 411
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
412
  CP_MEMBER(mkldnn_cache_capacity_);
413 414 415
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
416
  // Quantization related.
B
baoachun 已提交
417 418 419
  CP_MEMBER(use_mkldnn_int8_);
  CP_MEMBER(quantize_enabled_op_types_);
  CP_MEMBER(quantize_excluded_op_ids_);
420 421
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
422 423 424
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
425
  CP_MEMBER(disable_trt_plugin_fp16_);
426

石晓伟 已提交
427 428 429 430
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
431 432
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
433
  // XPU related.
434
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
435
  CP_MEMBER(xpu_device_id_);
436
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
437 438 439 440 441
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
442

W
Wilber 已提交
443 444 445
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
446
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
447

448 449 450
  // profile related.
  CP_MEMBER(with_profile_);

451 452 453
  // glog related.
  CP_MEMBER(with_glog_info_);

454 455 456 457 458 459 460 461 462 463
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

464 465
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
466 467 468
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
469
  CP_MEMBER(ipu_micro_batch_size_);
J
jianghaicheng 已提交
470 471
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
472 473 474 475
  CP_MEMBER(ipu_enable_fp16_);
  CP_MEMBER(ipu_replica_num_);
  CP_MEMBER(ipu_available_memory_proportion_);
  CP_MEMBER(ipu_enable_half_partial_);
476 477
  CP_MEMBER(ipu_custom_ops_info_);
  CP_MEMBER(ipu_custom_patterns_);
J
jianghaicheng 已提交
478

479 480 481
  // fleet exe related
  CP_MEMBER(dist_config_);

482 483 484 485 486
  // custom device related.
  CP_MEMBER(use_custom_device_);
  CP_MEMBER(custom_device_type_);
  CP_MEMBER(custom_device_id_);

487
  if (use_gpu_) {
W
Wilber 已提交
488 489
    PADDLE_ENFORCE_EQ(use_xpu_,
                      false,
490 491
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
492 493
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
494 495 496
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
497 498 499
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
500 501 502
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
503 504 505 506 507
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

508
#undef CP_MEMBER
Y
Yan Chunwei 已提交
509

W
Wilber 已提交
510 511 512 513 514
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
515
    pass_builder_->ClearPasses();
W
Wilber 已提交
516
    auto other_passes = other.pass_builder()->AllPasses();
517 518
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
519
    }
520
  }
D
denglin-github 已提交
521 522 523 524 525 526 527 528
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
W
Wilber 已提交
529 530 531 532
    std::set_difference(all_passes.begin(),
                        all_passes.end(),
                        other_passes.begin(),
                        other_passes.end(),
D
denglin-github 已提交
533 534 535 536 537
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
W
Wilber 已提交
538 539 540 541

  for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) {
    pass_builder_->DeletePass(delete_pass);
  }
542 543
}

544
void AnalysisConfig::EnableCUDNN() {
545
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
546 547 548 549 550 551 552 553 554
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

555
void AnalysisConfig::EnableMKLDNN() {
556 557 558 559 560 561
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
562 563

  Update();
564 565
}

566 567 568 569 570 571 572 573 574
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

575 576 577 578 579 580 581 582 583 584 585 586 587
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

588 589
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
590 591
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
592 593 594 595
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
596 597 598 599
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
600 601 602 603 604 605 606 607
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

B
baoachun 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
void AnalysisConfig::EnableMkldnnInt8(
    const std::unordered_set<std::string> &op_list) {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_int8_ = true;
  use_fc_padding_ = false;
  if (!op_list.empty()) {
    for (auto &type : op_list) {
      if (!quantize_enabled_op_types_.count(type)) {
        LOG(ERROR) << "There are unsupported operators in the configured "
                      "quantization operator list. The unsupported operator "
                      "is: "
                   << type;
        use_mkldnn_int8_ = false;
        break;
      }
    }
    if (use_mkldnn_int8_) {
      quantize_enabled_op_types_.clear();
      quantize_enabled_op_types_.insert(op_list.begin(), op_list.end());
    }
  }
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8";
  use_mkldnn_int8_ = false;
#endif

  Update();
}

637 638 639 640 641 642 643 644
void AnalysisConfig::SetCalibrationFilePath(
    const std::string &calibration_file_path) {
  calibration_file_path_ = calibration_file_path;
  VLOG(1) << "Set calibration file path of quantize model: " +
                 calibration_file_path_;
  Update();
}

645
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
646
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
647 648
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
649
  return mkldnn_quantizer_config_.get();
650 651
}

652
void AnalysisConfig::EnableTensorRtEngine(
653
    int64_t workspace_size,
W
Wilber 已提交
654 655 656 657
    int max_batch_size,
    int min_subgraph_size,
    AnalysisConfig::Precision precision_mode,
    bool use_static,
658
    bool use_calib_mode) {
659
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
660 661 662 663 664
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

665 666 667
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
668
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
669
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
670
  trt_use_static_engine_ = use_static;
671
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
672

673
  Update();
Y
Yan Chunwei 已提交
674 675 676 677
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
678 679
}

D
denglin-github 已提交
680 681 682 683 684 685 686 687 688
void AnalysisConfig::EnableDlnne(
    int min_subgraph_size,
    int max_batch_size,
    bool use_static_batch,
    std::string weight_share_mode,
    std::unordered_set<std::string> disable_nodes_by_ouputs,
    std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict,
    bool use_calib_mode,
    AnalysisConfig::Precision precision_mode) {
D
denglin-github 已提交
689 690
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
D
denglin-github 已提交
691 692 693 694 695 696 697
  dlnne_max_batchsize_ = max_batch_size;
  dlnne_use_static_batch_ = use_static_batch;
  dlnne_weight_share_mode_ = weight_share_mode;
  dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs;
  dlnne_input_shape_dict_ = dlnne_input_shape_dict;
  dlnne_use_calib_mode_ = use_calib_mode;
  dlnne_precision_mode_ = precision_mode;
D
denglin-github 已提交
698 699 700
  Update();
}

701 702 703 704 705 706 707 708 709 710 711
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

712 713 714 715 716
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

717 718
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

719 720 721 722 723
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

724
void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; }
725

Y
Yan Chunwei 已提交
726
// TODO(Superjomn) refactor this, buggy.
727
void AnalysisConfig::Update() {
728 729 730
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
731
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
732 733
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
734
      ((use_npu() ^ pass_builder_->use_npu())) ||
735 736
      ((use_ipu() ^ pass_builder_->use_ipu())) ||
      ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
Y
Yan Chunwei 已提交
737 738 739 740 741 742 743
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
744 745 746
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
747 748
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
749 750
          use_gpu(),
          false,
751 752 753
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
754 755
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
756 757
          use_gpu(),
          false,
W
Wilber 已提交
758 759 760
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
761 762
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
763 764
          use_gpu(),
          false,
765 766 767
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy);
Y
Yan Chunwei 已提交
768 769 770
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
771

772
  } else {
Y
Yan Chunwei 已提交
773 774 775
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
776 777 778 779
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
780 781
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
782 783
          use_gpu(),
          false,
784 785 786 787
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
788 789
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
790 791
          use_gpu(),
          false,
W
Wilber 已提交
792 793 794 795
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
796 797
    } else if (use_custom_device()) {
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
798 799
          use_gpu(),
          false,
800 801 802 803
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and CustomDevice."));
      pass_builder_.reset(new CustomDevicePassStrategy(
          *static_cast<CustomDevicePassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
804 805 806 807
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
808 809 810
  }

  if (use_tensorrt_) {
811 812
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
813
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
814
          (pass == "conv_bn_fuse_pass")) {
815 816
        continue;
      }
817
      pass_builder()->AppendPass(pass);
818 819
    }
  }
820

D
denglin-github 已提交
821 822 823 824 825 826 827
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

828
  if (use_gpu() && use_cudnn_) {
829
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
830 831 832 833 834 835 836 837
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

838
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
839
#ifdef PADDLE_WITH_MKLDNN
840 841 842
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
843 844
    } else {
      pass_builder()->EnableMKLDNN();
845 846 847 848
    }
#endif
  }

849 850 851 852 853
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
854 855
    }
#ifdef PADDLE_WITH_MKLDNN
856
    pass_builder()->EnableMkldnnQuantizer();
857 858 859
#endif
  }

860 861 862 863 864 865
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

B
baoachun 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879
  if (use_mkldnn_int8_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization "
                    "is enabled.";
    } else if (!use_mkldnn_) {
      LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN "
                    "is enabled.";
    } else {
      pass_builder()->EnableMkldnnInt8();
    }
#endif
  }

880
#ifdef PADDLE_WITH_MKLDNN
881 882
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
883
#else
Y
Yan Chunwei 已提交
884
  if (enable_memory_optim_) {
885 886
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
887 888
  }

石晓伟 已提交
889 890 891 892 893 894 895
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
W
Wilber 已提交
896 897
      if (std::find(lite_passes_filter_.begin(),
                    lite_passes_filter_.end(),
石晓伟 已提交
898 899 900 901 902 903
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

904
  if (use_xpu_) {
905
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
W
Wilber 已提交
906 907
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
908 909 910
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
911 912 913 914 915
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
916 917
  }

W
Wilber 已提交
918
  if (use_npu_) {
919
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
920 921
    PADDLE_ENFORCE_EQ(use_gpu_,
                      false,
W
Wilber 已提交
922 923 924 925 926 927 928 929 930
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
931 932 933 934 935 936 937
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
938 939 940 941 942 943 944
  if (use_custom_device_) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the custom device "
        "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif
  }
945 946 947 948 949
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

950
std::string AnalysisConfig::SerializeInfoCache() {
951
  std::stringstream ss;
Y
Yan Chunwei 已提交
952 953 954 955
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

956 957
  ss << calibration_file_path_;

958
  ss << use_gpu_;
959 960
  ss << use_external_stream_;
  ss << exec_stream_;
961
  ss << use_fc_padding_;
962 963
  ss << gpu_device_id_;
  ss << xpu_device_id_;
964 965 966 967 968
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
969 970
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
971 972 973
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

974 975 976
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

977 978 979
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
980
  ss << enable_memory_optim_;
981 982

  ss << use_mkldnn_;
983
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
984 985 986
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

987
  ss << use_mkldnn_quantizer_;
988
  ss << use_mkldnn_bfloat16_;
989
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
B
baoachun 已提交
990 991 992
  ss << use_mkldnn_int8_;
  for (auto &item : quantize_enabled_op_types_) ss << item;
  for (auto &item : quantize_excluded_op_ids_) ss << item;
993
  ss << ";";
Y
Yan Chunwei 已提交
994 995
  ss << model_from_memory_;

996 997
  ss << with_profile_;

998 999
  ss << with_glog_info_;

1000 1001 1002 1003
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
1004 1005
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
1006 1007

  ss << use_lite_;
1008 1009
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
1010 1011 1012 1013 1014
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
1015

W
Wilber 已提交
1016 1017 1018
  ss << use_npu_;
  ss << npu_device_id_;

1019 1020
  ss << thread_local_stream_;

J
jianghaicheng 已提交
1021 1022
  ss << use_ipu_;
  ss << ipu_device_num_;
1023
  ss << ipu_micro_batch_size_;
J
jianghaicheng 已提交
1024 1025
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
1026 1027 1028 1029
  ss << ipu_enable_fp16_;
  ss << ipu_replica_num_;
  ss << ipu_available_memory_proportion_;
  ss << ipu_enable_half_partial_;
1030 1031 1032 1033 1034 1035
  for (auto custom_op : ipu_custom_ops_info_)
    for (auto attr : custom_op) ss << attr;
  ss << ";";
  for (auto pattern : ipu_custom_patterns_)
    for (auto attr : pattern) ss << attr;
  ss << ";";
1036
  for (auto &op : mixed_black_list_) ss << op.c_str();
1037 1038 1039
  return ss.str();
}

1040
void AnalysisConfig::SetCpuMathLibraryNumThreads(
1041 1042
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
1043 1044

  Update();
1045 1046
}

1047
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
1048
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1049 1050
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
1051
  size_t gpu_total, gpu_available;
1052
  platform::SetDeviceId(gpu_device_id_);
1053 1054
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
1055 1056
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
1057 1058 1059 1060
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
1061 1062 1063 1064
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
1065 1066
}

1067 1068
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
1069 1070 1071
  Update();
}

1072
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
1073 1074 1075
  return enable_memory_optim_;
}

1076 1077 1078 1079
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
1080 1081
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
1082
  model_from_memory_ = true;
T
Tao Luo 已提交
1083 1084
}

1085
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
1086 1087 1088 1089 1090
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
1091
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
1092 1093 1094 1095 1096
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
1097 1098 1099 1100
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
1101 1102 1103 1104 1105 1106

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

1107 1108 1109 1110 1111
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
1112
void AnalysisConfig::EnableLiteEngine(
W
Wilber 已提交
1113 1114
    AnalysisConfig::Precision precision_mode,
    bool zero_copy,
石晓伟 已提交
1115 1116 1117 1118 1119 1120
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
1121
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
1122 1123 1124
  Update();
}

1125 1126 1127 1128 1129 1130 1131
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

1132 1133
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
1145 1146 1147 1148
  if (!(calibration_file_path_.empty())) {
    os.InsertRow({"calibration_file_path", calibration_file_path_});
  }

1149 1150 1151 1152 1153 1154 1155 1156
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
1157
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
1168 1169
    os.InsertRow(
        {"use_external_stream", use_external_stream_ ? "true" : "false"});
1170 1171 1172 1173 1174
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
W
Wilber 已提交
1218 1219 1220
      os.InsertRow(
          {"tensorrt_tuned_dynamic_shape",
           trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"});
1221

1222 1223
      os.InsertRow(
          {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"});
1224 1225
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
1226 1227 1228
      os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_});
      os.InsertRow(
          {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_});
1229 1230 1231 1232
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
1233
#endif
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
1257 1258
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
1259 1260 1261 1262

  return os.PrintTable();
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
W
Wilber 已提交
1284 1285
  PADDLE_ENFORCE_EQ(model_cache_token.empty(),
                    false,
1286 1287
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
W
Wilber 已提交
1288 1289
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(),
                    false,
1290 1291 1292
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
1293 1294 1295
                    false,
                    platform::errors::InvalidArgument(
                        "model_cache_token has already been set."));
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

1321 1322 1323 1324 1325 1326 1327
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
W
Wilber 已提交
1328 1329
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(),
                    false,
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
1358 1359 1360 1361 1362 1363

void AnalysisConfig::Exp_SetBlackListOpsForMixedModel(
    const std::unordered_set<std::string> &black_list) {
  mixed_black_list_ = black_list;
}

1364
}  // namespace paddle