distributed_strategy.py 81.9 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28
non_auto_func_called = True


def __non_auto_func_called__(func):
29

30 31 32 33 34 35 36 37 38 39
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

40

41 42 43 44 45 46 47 48 49 50 51 52 53
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
54 55 56
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
57 58 59 60 61 62 63 64 65 66 67 68
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


106 107 108 109
ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy
ReduceStrategyFleet = int


110
class DistributedStrategy(object):
111 112
    __lock_attr = False

113
    def __init__(self):
114 115 116 117 118
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
119

120 121 122 123 124 125
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
126
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
127 128 129

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
130
        if _global_flags().is_public(key):
131
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
132
                _global_flags()[key])
133
        key = 'FLAGS_conv_workspace_size_limit'
134 135
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
136
        key = 'FLAGS_cudnn_exhaustive_search'
137 138
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
139
        key = 'FLAGS_sync_nccl_allreduce'
140 141
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
142

143 144 145 146 147 148 149
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
150

151
    def save_to_prototxt(self, output):
152 153 154 155
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
156

157
          .. code-block:: python
1
123malin 已提交
158

159
            import paddle.distributed.fleet as fleet
160 161 162
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
163
            strategy.recompute_configs = {"checkpoints": ["x"]}
164 165
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
166 167 168 169
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
170 171 172 173
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
174

175 176
          .. code-block:: python

177
            import paddle.distributed.fleet as fleet
178
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
179
            strategy.load_from_prototxt("dist_strategy.prototxt")
180 181 182 183 184 185 186 187 188 189 190
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
191

192 193
          .. code-block:: python

M
mapingshuo 已提交
194
            import paddle
1
123malin 已提交
195
            exe_strategy = paddle.static.ExecutionStrategy()
196 197 198 199
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

200
            strategy = paddle.distributed.fleet.DistributedStrategy()
201 202 203 204 205 206 207 208 209 210
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
211
    @is_strict_auto
212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
226

227 228
          .. code-block:: python

M
mapingshuo 已提交
229
            import paddle
1
123malin 已提交
230
            build_strategy = paddle.static.BuildStrategy()
231 232 233 234 235 236 237 238
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
239

240
            strategy = paddle.distributed.fleet.DistributedStrategy()
241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
247 248 249 250
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
                value = ReduceStrategyFluid(value)
            setattr(build_strategy, f.name, value)
251 252 253
        return build_strategy

    @build_strategy.setter
254
    @is_strict_auto
255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
259 260 261 262
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
263 264 265 266 267
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
290
    def a_sync(self):
291 292 293 294 295 296 297
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
298

299 300
          .. code-block:: python

301
            import paddle.distributed.fleet as fleet
302 303 304 305
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
306
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
307

308 309 310
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
311
        return self.strategy.a_sync
312

D
Dong Daxiang 已提交
313
    @a_sync.setter
314
    @is_strict_auto
D
Dong Daxiang 已提交
315
    def a_sync(self, flag):
316
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
317
            self.strategy.a_sync = flag
318
            self.a_sync_configs = {"k_steps": 0}
319
        else:
320
            raise ValueError(
321 322
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
323 324

    @property
D
Dong Daxiang 已提交
325
    def a_sync_configs(self):
326
        """
D
Dong Daxiang 已提交
327
        Set a_sync update configurations. In general, asynchronous parameter server
328 329
        training has serveral configurable settings that can be configured through
        a dict.
330

331
        **Notes**:
M
mapingshuo 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
345

346
        Examples:
1
123malin 已提交
347

348
          .. code-block:: python
349

350
            import paddle.distributed.fleet as fleet
351 352
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
353

354
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
355
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
356
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
357
            strategy.a_sync_configs = configs
358

359 360
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
361

362
        """
D
Dong Daxiang 已提交
363
        return get_msg_dict(self.strategy.a_sync_configs)
364

D
Dong Daxiang 已提交
365
    @a_sync_configs.setter
366
    @is_strict_auto
D
Dong Daxiang 已提交
367 368 369 370
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    @property
    def trainer_desc_configs(self):
        """
        Set trainer desc configurations. 

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

            stat_var_names(list(str)): 

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

404 405 406 407
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
W
wangguanqun 已提交
408
        Default value: False
409 410 411 412 413 414 415 416 417 418

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
W
wangguanqun 已提交
419
            strategy.adam_d2sum = True  # by default this is False
420 421 422 423 424 425 426 427 428 429 430 431 432

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
433 434
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
435

436 437 438 439 440 441 442
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    @property
    def fs_client_param(self):
        """
        Set fs client configurations. 
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
            hadoop_bin(str): 
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
        check_configs_key(self.strategy.fs_client_param, configs,
                          "fs_client_param")
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

482
        def set_table_config(msg, config_name, configs, index=0):
483 484 485
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
486
                    # print("message:", name)
487 488 489 490
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
491
                        # print("message num:", name, num)
492 493 494 495
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
496 497
                        set_table_config(getattr(msg, field.name), name,
                                         configs)
498
                else:
499
                    # print("not message:", name)
500 501 502 503 504
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
505 506 507 508
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
509

510 511 512
        if not configs:
            print("table configs is empty")
        else:
513 514 515 516 517
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
                set_table_config(table_data, "table_parameters." + table_name,
                                 configs[table_name])
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                                   'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                                   'sparse_weight_bounds', 'sparse_fea_dim', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                                   'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                                   'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                                   'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                                   'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                                   'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold',
                                   'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                                   'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                                   'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                                   'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
                                   'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate']
        support_sparse_table_class = ['DownpourSparseTable']
        support_sparse_accessor_class = [
            'DownpourSparseValueAccessor', 'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor',
538
            'DownpourDoubleUnitAccessor', 'DownpourCtrDymfAccessor'
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        ]
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

        def sparse_optimizer_config(sgd, strategy, prefix):
            optimizer_name = strategy.get(prefix + "sparse_optimizer",
                                          "adagrad")
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.naive.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
            table_class = config.get("sparse_table_class",
                                     "DownpourSparseTable")
            if table_class not in support_sparse_table_class:
                raise ValueError(
                    "support sparse_table_class: ['DownpourSparseTable'], but actual %s"
                    % (table_class))
            table_data.table_class = 'MemorySparseTable'
            table_data.shard_num = config.get('sparse_shard_num', 1000)

            accessor_class = config.get("sparse_accessor_class",
                                        "DownpourCtrAccessor")
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
630
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
631 632
                    % (accessor_class))

633 634
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
635 636
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
637
            else:
638 639 640
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
641 642 643 644 645 646 647
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
                'sparse_embedx_threshold', 10)

648 649 650 651 652
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
                'sparse_nonclk_coeff', 0.1)
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
                'sparse_click_coeff', 1)
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
                'sparse_base_threshold', 1.5)
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
                'sparse_delta_threshold', 0.25)
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
                'sparse_delta_keep_days', 16)
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = config.get(
                'sparse_show_click_decay_rate', 0.98)
            table_data.accessor.ctr_accessor_param.delete_threshold = config.get(
                'sparse_delete_threshold', 0.8)
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = config.get(
                'sparse_delete_after_unseen_days', 30)
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = config.get(
                'sparse_ssd_unseenday_threshold', 1)
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

            if accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, '')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, '')
            else:
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, 'embed_')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, 'embedx_')

        if not configs:
            print("fleet desc config is empty")
        else:
            for table_name in configs:
                if table_name == 'dense_table' or table_name == 'datanorm_table':
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

707
    @property
708 709 710 711
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
712

713
        Examples:
1
123malin 已提交
714

715
          .. code-block:: python
716

717
            import paddle.distributed.fleet as fleet
718 719
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
720

721 722
        """
        return self.strategy.amp
723

724
    @amp.setter
725
    @is_strict_auto
726
    def amp(self, flag):
727
        if isinstance(flag, bool):
728
            self.strategy.amp = flag
729
        else:
730
            print("WARNING: amp should have value of bool type")
731 732

    @property
733
    def amp_configs(self):
734 735 736 737 738
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
754

755 756 757 758 759 760 761 762
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
763

764 765 766 767 768 769 770 771
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
772 773 774 775 776 777 778 779 780 781 782 783 784

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
785
        """
786
        return get_msg_dict(self.strategy.amp_configs)
787

788
    @amp_configs.setter
789
    @is_strict_auto
790 791 792
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

819
    @property
820 821 822 823 824 825
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
826

827 828
          .. code-block:: python

829
            import paddle.distributed.fleet as fleet
830 831 832 833 834 835
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
836

837 838
    @property
    def sync_nccl_allreduce(self):
839 840 841 842 843
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
844

845 846 847 848 849 850
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
851 852 853
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
854
    @is_strict_auto
855 856 857 858
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
859
            print("WARNING: sync_nccl_allreduce should have value of bool type")
860

861
    @property
862
    def use_hierarchical_allreduce(self):
863 864 865 866 867 868
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
869

870 871 872 873 874 875
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
876
        return self.strategy.use_hierarchical_allreduce
877

878
    @use_hierarchical_allreduce.setter
879
    @is_strict_auto
880
    def use_hierarchical_allreduce(self, flag):
881
        if isinstance(flag, bool):
882
            self.strategy.use_hierarchical_allreduce = flag
883 884
        else:
            print(
885
                "WARNING: use_hierarchical_allreduce should have value of bool type"
886 887 888
            )

    @property
889
    def hierarchical_allreduce_inter_nranks(self):
890 891 892 893 894
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
895

896 897 898 899 900 901
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
902
        return self.strategy.hierarchical_allreduce_inter_nranks
903

904
    @hierarchical_allreduce_inter_nranks.setter
905
    @is_strict_auto
906 907 908
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
909 910
        else:
            print(
911
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
912 913
            )

914
    @property
915
    def sync_batch_norm(self):
916 917
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
918

919 920 921
        Default value: False

        Examples:
1
123malin 已提交
922

923 924 925 926 927 928 929
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

930
        return self.strategy.sync_batch_norm
931

932
    @sync_batch_norm.setter
933
    @is_strict_auto
934
    def sync_batch_norm(self, flag):
935
        if isinstance(flag, bool):
936
            self.strategy.sync_batch_norm = flag
937
        else:
938
            print("WARNING: sync_batch_norm should have value of bool type")
939 940 941

    @property
    def fuse_all_reduce_ops(self):
942 943 944 945 946
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
947

948 949 950 951 952 953
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
954 955 956
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
957
    @is_strict_auto
958 959 960 961 962 963
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

964 965
    @property
    def fuse_grad_size_in_MB(self):
966 967 968 969 970 971
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
972

973
          .. code-block:: python
1
123malin 已提交
974

975 976 977 978
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
979 980 981
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
982
    @is_strict_auto
983 984 985 986 987 988
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1015 1016 1017 1018 1019 1020
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

1021
        Default value: False
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
1041 1042
                "WARNING: find_unused_parameters should have value of bool type"
            )
1043

1044 1045 1046 1047 1048
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1049
    @is_strict_auto
1050 1051 1052 1053 1054 1055 1056 1057
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

1058
    @property
1059
    def nccl_comm_num(self):
1060 1061 1062 1063 1064 1065
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
1066

1067
          .. code-block:: python
1
123malin 已提交
1068

1069 1070 1071 1072 1073
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

1074
        return self.strategy.nccl_comm_num
1075

1076
    @nccl_comm_num.setter
1077
    @is_strict_auto
1078
    def nccl_comm_num(self, value):
1079
        if isinstance(value, int):
1080
            self.strategy.nccl_comm_num = value
1081
        else:
1082
            print("WARNING: nccl_comm_num should have value of int type")
1083

1084
    @recompute.setter
1085
    @is_strict_auto
1086
    def recompute(self, flag):
1087
        if isinstance(flag, bool):
1088
            self.strategy.recompute = flag
1089
        else:
1090
            print("WARNING: recompute should have value of bool type")
1091 1092

    @property
1093 1094
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
1109

1110
        Examples:
1
123malin 已提交
1111

1112
          .. code-block:: python
1
123malin 已提交
1113

1114
            import paddle.distributed.fleet as fleet
1115 1116
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
1117 1118 1119 1120
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
1121 1122 1123 1124 1125

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1126
    @is_strict_auto
1127 1128 1129 1130
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
1131

1132 1133 1134 1135
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
1136 1137 1138
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1139

1140 1141
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1142 1143 1144
        Default value: False

        Examples:
1
123malin 已提交
1145

1146
          .. code-block:: python
1
123malin 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
1165
        Set sharding configurations. 
1166 1167

        **Note**:
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1190
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1191

1192
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1193

1194 1195
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1196

1197 1198 1199
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1200

1201
        Examples:
1
123malin 已提交
1202

1203
          .. code-block:: python
1
123malin 已提交
1204

1205
            # sharding-DP, 2 nodes with 8 gpus per node
1206 1207 1208
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1209
            strategy.sharding_configs = {
1210 1211 1212
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1213
                "dp_degree": 2,
1214 1215
                "gradient_merge_acc_step": 4,
                }
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
1317 1318
                "WARNING: fuse_grad_size_in_num should have value of int32 type"
            )
1319

1320
    @property
1321 1322 1323 1324 1325 1326 1327 1328
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1329

1330
          .. code-block:: python
1
123malin 已提交
1331

1332
            import paddle.distributed.fleet as fleet
1333 1334 1335 1336 1337
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
            print("WARNING: is_fl_ps_mode should have value of bool type")

1351
    @pipeline.setter
1352
    @is_strict_auto
1353
    def pipeline(self, flag):
1354
        if isinstance(flag, bool):
1355
            self.strategy.pipeline = flag
1356
        else:
1357
            print("WARNING: pipeline should have value of bool type")
1358 1359

    @property
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
1370

1371 1372
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1373

1374
            **micro_batch_size**: the number of small batches in each user defined batch
1375

1376
        Examples:
1
123malin 已提交
1377

1378
          .. code-block:: python
1
123malin 已提交
1379

1380
            import paddle.distributed.fleet as fleet
1381 1382
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1383
            strategy.pipeline_configs = {"micro_batch_size": 12}
1384

1385
        """
1386

1387
        return get_msg_dict(self.strategy.pipeline_configs)
1388

1389
    @pipeline_configs.setter
1390
    @is_strict_auto
1391 1392 1393 1394
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1395

L
lilong12 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1428 1429
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1430 1431 1432 1433 1434 1435 1436 1437

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1438 1439
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1485
    @property
1486
    def localsgd(self):
1487
        """
M
mapingshuo 已提交
1488 1489 1490
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1491 1492 1493


        Examples:
1
123malin 已提交
1494

1495 1496 1497 1498 1499 1500 1501
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1502
        return self.strategy.localsgd
1503

1504
    @localsgd.setter
1505
    @is_strict_auto
1506 1507 1508
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1509
        else:
1510
            print("WARNING: localsgd should have value of bool type")
1511 1512

    @property
1513
    def localsgd_configs(self):
1514 1515 1516 1517 1518
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1519
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1520
            begin_step(int) The step of beginning training by localsgd. Default 1.
1521 1522

        Examples:
1
123malin 已提交
1523

1524 1525 1526 1527 1528
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1529 1530
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1531 1532
        """

1533
        return get_msg_dict(self.strategy.localsgd_configs)
1534

1535
    @localsgd_configs.setter
1536
    @is_strict_auto
1537 1538 1539 1540
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1551

1552 1553 1554 1555 1556 1557 1558
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1559
        return self.strategy.adaptive_localsgd
1560 1561 1562 1563 1564

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1565
            self.strategy.adaptive_localsgd = flag
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1579
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1580 1581

        Examples:
1
123malin 已提交
1582

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1601
    @property
1602
    def dgc(self):
1603 1604 1605 1606 1607 1608 1609
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1610

1611 1612 1613 1614 1615 1616 1617
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1618
        return self.strategy.dgc
1619

1620
    @dgc.setter
1621
    @is_strict_auto
1622 1623 1624
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1625
        else:
1626
            print("WARNING: dgc should have value of bool type")
1627 1628

    @property
1629
    def dgc_configs(self):
1630
        r"""
1631 1632 1633 1634
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1645 1646

        Examples:
1
123malin 已提交
1647

1648 1649 1650 1651 1652 1653 1654
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1655
        return get_msg_dict(self.strategy.dgc_configs)
1656

1657
    @dgc_configs.setter
1658
    @is_strict_auto
1659 1660 1661
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1662

1663 1664 1665 1666 1667 1668 1669
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1687
    @property
1688
    def gradient_merge(self):
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1700

M
mapingshuo 已提交
1701 1702
          .. code-block:: python

1703
            import paddle.distributed.fleet as fleet
1704 1705 1706 1707
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1708
        return self.strategy.gradient_merge
1709

1710
    @gradient_merge.setter
1711
    @is_strict_auto
1712
    def gradient_merge(self, flag):
1713
        if isinstance(flag, bool):
1714
            self.strategy.gradient_merge = flag
1715
        else:
1716 1717 1718 1719
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1720 1721
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1722 1723 1724 1725 1726 1727 1728

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1729

M
mapingshuo 已提交
1730 1731
          .. code-block:: python

1732
            import paddle.distributed.fleet as fleet
1733 1734 1735 1736
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1737 1738 1739
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1740
    @is_strict_auto
1741 1742 1743 1744
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1745 1746

    @property
1747
    def lars(self):
1748 1749 1750 1751 1752 1753 1754 1755
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1756

1757 1758 1759 1760 1761 1762
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1763
        return self.strategy.lars
1764

1765
    @lars.setter
1766
    @is_strict_auto
1767
    def lars(self, flag):
1768
        if isinstance(flag, bool):
1769
            self.strategy.lars = flag
1770
        else:
1771
            print("WARNING: lars should have value of bool type")
1772

1773 1774
    @property
    def lars_configs(self):
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1787

1788
          .. code-block:: python
M
mapingshuo 已提交
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1800 1801 1802
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1803
    @is_strict_auto
1804 1805 1806 1807
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1808
    @property
1809
    def lamb(self):
1810 1811 1812 1813 1814 1815 1816
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1817

1818
        Examples:
1
123malin 已提交
1819

1820 1821 1822 1823 1824 1825 1826
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1827
        return self.strategy.lamb
1828

1829
    @lamb.setter
1830
    @is_strict_auto
1831
    def lamb(self, flag):
1832
        if isinstance(flag, bool):
1833
            self.strategy.lamb = flag
1834
        else:
1835
            print("WARNING: lamb should have value of bool type")
1836

1837 1838
    @property
    def lamb_configs(self):
1839 1840 1841 1842 1843 1844 1845 1846 1847
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1848

1849
          .. code-block:: python
M
mapingshuo 已提交
1850

1851 1852 1853 1854 1855 1856 1857 1858
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1859 1860 1861
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1862
    @is_strict_auto
1863 1864 1865 1866
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1867 1868
    @property
    def elastic(self):
1869 1870 1871 1872
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1873 1874 1875
        return self.strategy.elastic

    @elastic.setter
1876
    @is_strict_auto
1877 1878 1879 1880 1881 1882 1883 1884
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1885 1886 1887 1888 1889 1890 1891 1892 1893
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1894

1895 1896 1897
          .. code-block:: python

            import paddle
1898
            paddle.enable_static()
1
123malin 已提交
1899
            import paddle.distributed.fleet as fleet
1900

1901 1902
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1903 1904
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1905 1906 1907 1908

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1909 1910 1911 1912 1913 1914 1915 1916 1917
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

K
kuizhiqing 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    @property
    def heter_ccl_mode(self):
        """
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.heter_ccl_mode = True

            # for initialize parallel env, only need to call
            paddle.distributed.init_parallel_env()
            # then the heterogenous context will be created.
        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
            print("WARNING: heter_ccl_mode should have value of bool type")

2007 2008
    @property
    def cudnn_exhaustive_search(self):
2009 2010 2011 2012 2013 2014 2015 2016
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
2017

2018 2019
          .. code-block:: python

1
123malin 已提交
2020 2021
            import paddle
            paddle.enable_static()
2022 2023 2024 2025 2026 2027 2028
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
2029 2030 2031
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2032
    @is_strict_auto
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
2043 2044 2045 2046 2047 2048 2049 2050
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
2051

2052 2053
          .. code-block:: python

1
123malin 已提交
2054 2055
            import paddle
            paddle.enable_static()
2056 2057 2058 2059 2060 2061
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2062

2063
        """
2064 2065 2066
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2067
    @is_strict_auto
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2078 2079 2080 2081 2082 2083
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
2084

2085 2086
          .. code-block:: python

1
123malin 已提交
2087 2088
            import paddle
            paddle.enable_static()
2089 2090 2091 2092 2093 2094 2095 2096
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
2097 2098 2099
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2100
    @is_strict_auto
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2129 2130
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2131

2132 2133 2134 2135 2136 2137
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2138
    def __repr__(self):
2139 2140 2141 2142 2143 2144 2145
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
2146 2147
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
2148 2149 2150 2151 2152 2153 2154 2155 2156

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2157
        fields = self.strategy.DESCRIPTOR.fields
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
2172
                                "{}=True <-> {}_configs".format(f.name, f.name))
2173 2174 2175 2176 2177 2178
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
2179 2180 2181
                                        getattr(my_configs,
                                                ff.name), google.protobuf.pyext.
                                        _message.RepeatedScalarContainer):
2182 2183 2184
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2185 2186
                                            draws += h2_format.format(
                                                ff.name, str(v))
2187
                                        else:
2188 2189
                                            draws += h2_format.format(
                                                "", str(v))
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2210
        for f in fields:
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res