reader.py 81.5 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
import time
N
niuliling123 已提交
22
import copy
23

J
Jiabin Yang 已提交
24
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, _non_static_mode, cpu_places, _current_expected_place, _in_eager_without_dygraph_check
S
sneaxiy 已提交
25
from .executor import global_scope
26
from .data_feeder import DataFeeder, BatchedTensorProvider
27
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
28
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
29 30
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
31
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
32
from .unique_name import UniqueNameGenerator
33
from .framework import _get_paddle_place, _get_paddle_place_list
34
from paddle.fluid.framework import _set_expected_place, _current_expected_place
35
import logging
36
import warnings
S
sneaxiy 已提交
37

38
### Dygraph DataLoader configs ###
39
import os
40 41 42
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
43
import queue
44 45 46
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

47
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
48 49

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51
KEEP_DATA_LOADER_ORDER = True
52
USE_PINNED_MEMORY = None
53 54 55 56 57 58 59 60 61 62
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
63 64 65 66 67 68 69 70 71 72


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
73

74 75 76 77 78 79 80 81 82
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
122
class DataLoaderBase(object):
123

Z
Zeng Jinle 已提交
124 125
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
126

Z
Zeng Jinle 已提交
127 128
    def __call__(self):
        return self
S
sneaxiy 已提交
129

Z
Zeng Jinle 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

145 146 147
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
148
        if arr.dtype == np.object_:
149 150 151 152 153 154 155 156
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
157

158
class AuToTune(object):
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
177 178
        logging.debug("User config for DataLoader: " +
                      str(self.loader.num_workers))
179 180
        best_num_workers = 0
        min_cost = float("inf")
181 182
        logging.debug("Tuning Range for num_workers: 0 ~ " +
                      str(self.max_num_worker))
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
                update_num = self.is_best(auto_tune_loader, best_num_workers,
                                          min_cost, self.max_num_worker)
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
            logging.debug("num_workers: " + str(num_workers) + " avg_cost: " +
                          str(avg_cost))
            num_workers += 2
200 201 202 203
        logging.info("auto_tune dataLoader best_num_workers: " +
                     str(best_num_workers))
        logging.debug("AutoTuning Cost for DataLoader: " +
                      str(time.time() - auto_tune_start) + ' seconds')
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
        if (sys.platform == 'darwin' or sys.platform == 'win32'):
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
N
niuliling123 已提交
220
        loader = copy.copy(self.loader)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        batch_size = self.loader.batch_sampler.batch_size
        if isinstance(self.loader.batch_sampler,
                      paddle.io.DistributedBatchSampler):
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
                drop_last=self.loader.batch_sampler.drop_last)
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                drop_last=self.loader.batch_sampler.drop_last)
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
            logging.debug("for back num_workers: " + str(num_workers) +
                          " avg_cost: " + str(time))
            step += 1
            if (time < best_time * 0.70 * boundary):
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


Z
Zeng Jinle 已提交
275
class DataLoader(object):
276 277 278 279 280 281 282 283
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
284
    DataLoader supports map-style dataset and iterable-style dataset.
285

K
Kaipeng Deng 已提交
286 287 288 289 290 291 292
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
293

294 295 296 297 298 299
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


315 316
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
317 318
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
319
        feed_list (list(Tensor)|tuple(Tensor), optional): feed Tensor list.
320
            The Tensors should be created by :code:`paddle.static.data()`.
321 322
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
323
        places(list(Place)|tuple(Place)|list(str), optional): a list of Place,
324 325
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
326 327 328
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
329
        return_list (bool, optional): whether the return value on each device is 
330
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
331
            value on each device would be a dict of str -> Tensor, where
332
            the key of the dict is the name of each fed Tensors. If 
333
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
334
            be a list(Tensor). :attr:`return_list` can only be True
335
            in dynamic graph mode. Default True.
336
        batch_sampler(BatchSampler, optional): an instance of `paddle.io.BatchSampler`
337 338
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
339
        batch_size(int|None, optional): sample number in a mini-batch, a substitution
340 341 342 343
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
344
        shuffle(bool, optional): whther to shuffle indices order before genrate
345 346
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
347
        drop_last(bool, optional): whether drop the last incomplete batch dataset size
348 349
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
350
        collate_fn(callable, optional): function to generate mini-batch data by merging
351 352
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
353
        num_workers(int, optional): the number of subprocess to load data, 0 for no
354
            subprocess used and loading data in main process. Default 0
355 356
        use_buffer_reader (bool, optional): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch
357 358 359
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
360 361 362
        prefetch_factor (int, optional): Number of batch data the DataLoader would prefetch
            if use_buffer_reader=True. Default 2.
        use_shared_memory (bool, optional): whether to use shared memory to speed up
363 364 365 366 367
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
368
        timeout(int, optional): the timeout value for getting data form output queue
369
            of subprocesses. Default 0.
370
        worker_init_fn(callable, optional): init function which will be called with
371 372 373 374
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
375
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
376 377 378 379 380 381

    Examples:
        
        .. code-block:: python

            import numpy as np
382 383

            import paddle
K
Kaipeng Deng 已提交
384 385
            import paddle.nn as nn
            import paddle.nn.functional as F
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

408 409
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
410
            class SimpleNet(nn.Layer):
411 412
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
413
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
414 415 416 417

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
418 419 420
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
421 422

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
423
                                batch_size=BATCH_SIZE,
424 425 426 427 428
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
429 430 431 432 433 434 435 436
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
437 438


439 440 441 442
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

443 444 445 446 447 448
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
449
                 return_list=True,
450 451 452 453 454 455 456
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
457
                 prefetch_factor=2,
458 459
                 use_shared_memory=True,
                 timeout=0,
K
Kaipeng Deng 已提交
460 461
                 worker_init_fn=None,
                 persistent_workers=False):
462 463 464
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
465
        self.prefetch_factor = prefetch_factor
466 467 468 469
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
470
        if not return_list and not _non_static_mode():
471 472 473 474
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

475 476
        if places is None:
            places = _current_expected_place()
477 478 479 480
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
481 482 483
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
484 485
        if num_workers > 0 and (sys.platform == 'darwin'
                                or sys.platform == 'win32'):
486 487 488
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
489 490 491
            num_workers = 0
        self.num_workers = num_workers

492 493
        assert prefetch_factor > 0, "prefetch_factor should be a positive value"

494 495 496 497 498 499 500
        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

501 502 503 504 505 506 507 508 509 510 511 512
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

513 514 515 516 517
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
518 519 520 521
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
522
        else:
523 524
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
525
                "batch_sampler is not given"
526
            self.batch_size = batch_size
527
            if isinstance(dataset, IterableDataset):
528 529
                self.batch_sampler = _InfiniteIterableSampler(
                    dataset, batch_size)
530
            else:
531 532 533 534
                self.batch_sampler = BatchSampler(dataset=dataset,
                                                  batch_size=batch_size,
                                                  shuffle=shuffle,
                                                  drop_last=drop_last)
535

536
        self.drop_last = drop_last
537 538
        self.auto_collate_batch = self.batch_sampler is not None

539
        self.pin_memory = False
J
Jiabin Yang 已提交
540
        if _non_static_mode():
541 542 543
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

K
Kaipeng Deng 已提交
544 545
        self._persistent_workers = persistent_workers
        self._iterator = None
546
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
547

548
    def __len__(self):
549 550 551
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
552
            if self.auto_collate_batch:
553
                return len(self.batch_sampler)
554 555
            else:
                return len(self.dataset)
556 557 558 559

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
560 561 562 563 564 565
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
566 567 568 569 570 571
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
572 573 574 575 576
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
577
                       return_list=False,
578 579
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
580
        """
K
Kaipeng Deng 已提交
581 582 583 584
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

585 586 587
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
588 589 590 591 592 593 594 595
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
596
        
Z
Zeng Jinle 已提交
597 598 599 600 601
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
602
        process.
Z
Zeng Jinle 已提交
603 604

        Args:  
605 606
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
620
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
621 622
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
623 624 625 626 627 628
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
629 630 631 632 633 634 635
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
636 637 638 639

        Returns:
            loader (DataLoader): the created DataLoader object.

640
        Examples 1:
Z
Zeng Jinle 已提交
641 642
            
            .. code-block:: python
S
sneaxiy 已提交
643

644 645 646
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
647
                import numpy as np
648

649 650 651 652 653
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
654 655 656 657 658 659 660 661 662 663 664
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

665 666
                paddle.enable_static()

Z
Zeng Jinle 已提交
667
                def simple_net(image, label):
668 669 670 671
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
711

Z
Zeng Jinle 已提交
712
                    return __reader__
713

Z
Zeng Jinle 已提交
714 715 716 717 718
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
719

Z
Zeng Jinle 已提交
720 721 722 723 724 725 726
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
727
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
728 729 730 731 732 733 734 735 736 737 738
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
739

740 741
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
742

Z
Zeng Jinle 已提交
743
                # Define DataLoader 
744
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
745

Z
Zeng Jinle 已提交
746 747
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
748

Z
Zeng Jinle 已提交
749 750 751
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
752 753
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
754 755
                # 
                # If DataLoader is not iterable, places can be None.
756
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
757
                set_data_source(loader, places)
S
sneaxiy 已提交
758

759 760
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
761

762
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
763

Z
Zeng Jinle 已提交
764 765 766 767 768 769
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


770 771 772 773
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
774
                '''
775
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
776
                '''
777
                import numpy as np
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
842 843 844

            .. code-block:: python

845 846 847 848 849
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
850 851 852 853 854 855
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

856 857
                paddle.enable_static()

858 859 860 861 862 863
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

864
                x = static.data(name='x', shape=[None], dtype='float32')  
865 866 867
                y = x * x

                def run_inference(drop_last): 
868
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
869
                            capacity=8, drop_last=drop_last)
870
                    loader.set_batch_generator(batch_generator, static.cpu_places())
871

872 873
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
889
        """
J
Jiabin Yang 已提交
890
        if _non_static_mode():
891 892 893 894 895
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
896
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
897 898 899 900

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
901 902 903 904
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
905 906
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
907

Z
Zeng Jinle 已提交
908 909
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
910 911 912
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
913 914 915
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
916

Z
Zeng Jinle 已提交
917 918 919
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
920

Z
Zeng Jinle 已提交
921 922 923
        Examples:

            .. code-block:: python
924

925 926 927 928
                import paddle
                import paddle.static as static

                paddle.enable_static()
929

930 931
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
932

933 934 935 936 937
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
938
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
939

940
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
941 942
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
943

S
sneaxiy 已提交
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
970 971
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
972 973 974
            )
        self._iterable = True
        if not return_list:
975 976
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
977 978 979 980 981
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
982 983
        if self._use_multiprocess and (sys.platform == 'darwin'
                                       or sys.platform == 'win32'):
984 985
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
986 987 988 989 990 991 992 993 994 995 996 997 998
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
999
        # mode, this thread is used to get next batch data from self._batch_reader, then
1000 1001
        # push it into self._blocking_queue
        self._thread = None
1002 1003
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
1004 1005 1006 1007 1008 1009 1010 1011 1012

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1034
            core._erase_process_pids(id(self))
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1045
            core.Variable(), self._capacity, False)
1046
        self._reader = None
1047 1048 1049 1050 1051 1052
        self._reader = core.create_py_reader(self.queue, self._var_names,
                                             self._shapes, self._dtypes,
                                             self._need_check_feed,
                                             self._places,
                                             self._use_double_buffer, True,
                                             self._pin_memory)
1053 1054 1055

    def _start(self):
        if self._use_multiprocess:
1056 1057 1058
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1059
            self._data_queue = multiprocessing.Queue(self._capacity)
1060 1061 1062
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1063 1064 1065
            self._process = multiprocessing.Process(target=_reader_process_loop,
                                                    args=(self._batch_reader,
                                                          self._data_queue))
1066 1067 1068 1069 1070
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
1071
            # or just hang, the main process will hang waiting for data, so here need to deal
1072
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
1073
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of
1074
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1075 1076
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1077 1078 1079 1080

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1081 1082
                target=self._reader_thread_loop_for_multiprocess,
                args=(_current_expected_place(), ))
1083 1084 1085
            self._thread.daemon = True
            self._thread.start()
        else:
1086
            self._thread = threading.Thread(
1087 1088
                target=self._reader_thread_loop_for_singleprocess,
                args=(_current_expected_place(), ))
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1109
            if _in_eager_without_dygraph_check():
1110
                return core.eager.read_next_tensor_list(
1111 1112 1113
                    self._reader.read_next_list()[0])
            else:
                return self._reader.read_next_var_list()
1114 1115 1116 1117
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

1118 1119 1120 1121 1122 1123 1124 1125 1126
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1127 1128 1129 1130
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
        _set_expected_place(legacy_expected_place)

1131 1132
        while not self._thread_done_event.is_set():
            try:
1133 1134 1135 1136
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies
                # (i.e., a put() always corresponding to a get()), hanging on get() can
                # still happen when data in queue is corrupted (e.g., due to
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever
1137
                # we try to get data from `data_queue`
1138 1139 1140 1141 1142 1143 1144
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1145 1146 1147 1148
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1149
                self._exit_thread_unexpectedly()
1150 1151
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1152
                )
1153
                six.reraise(*sys.exc_info())
1154 1155

            if not self._thread_done_event.is_set():
1156
                if tensor_list is not None:
1157 1158
                    try:
                        array = core.LoDTensorArray()
1159 1160
                        for tensor in tensor_list:
                            array.append(tensor)
1161 1162 1163
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1164
                        self._exit_thread_unexpectedly()
1165 1166
                        six.reraise(*sys.exc_info())
                else:
1167
                    self._exit_thread_expectedly()
1168

1169
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1170
        try:
1171 1172 1173
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
            _set_expected_place(legacy_expected_place)

1174 1175 1176 1177
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1178
                        item = self._check_input_array(item)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1203 1204 1205 1206
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1207 1208 1209 1210
        self.set_sample_list_generator(paddle.batch(reader,
                                                    batch_size=batch_size,
                                                    drop_last=drop_last),
                                       places=places)
1211 1212 1213
        return self

    def set_sample_list_generator(self, reader, places=None):
1214 1215 1216 1217 1218
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1234 1235 1236 1237
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1238
        self._batch_reader = reader
1239 1240
        if places is None:
            places = _current_expected_place()
1241 1242
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1243
            "Number of places must be 1 in imperative mode"
1244 1245 1246
        return self


Z
Zeng Jinle 已提交
1247
class GeneratorLoader(DataLoaderBase):
1248

S
sneaxiy 已提交
1249
    def __init__(self,
1250 1251
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1252
                 use_double_buffer=True,
1253
                 iterable=True,
1254 1255
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1256
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1257
        self._places = None
S
sneaxiy 已提交
1258
        self._thread = None
1259
        self._queue = None
1260
        self._feed_list = feed_list
1261 1262 1263
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1264 1265
        if not capacity:
            raise ValueError("Please give value to capacity.")
1266 1267 1268 1269
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1270 1271 1272 1273
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1274

Z
Zeng Jinle 已提交
1275
    def _wait_thread_ends(self):
1276
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1277 1278 1279 1280 1281 1282 1283 1284
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1285 1286 1287 1288 1289 1290
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1291 1292
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1293
        self._reader = None
1294 1295 1296 1297 1298 1299
        self._reader = core.create_py_reader(self.queue, self._var_names,
                                             self._shapes, self._dtypes,
                                             self._need_check_feed,
                                             self._places,
                                             self._use_double_buffer,
                                             self._drop_last, False)
S
sneaxiy 已提交
1300 1301 1302 1303 1304 1305 1306

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1307
        need_check_feed = []
S
sneaxiy 已提交
1308 1309 1310 1311 1312 1313 1314

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1315
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1316

Z
Zeng Jinle 已提交
1317 1318 1319 1320
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1321

S
sneaxiy 已提交
1322
        var = global_scope().var(queue_name)
1323 1324
        self._queue = core.init_lod_tensor_blocking_queue(
            var, self._capacity, self._keep_order)
1325 1326 1327 1328 1329

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1330

1331
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1332

1333
        dtype_int = [int(t) for t in dtypes]
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        block.append_op(type='create_py_reader',
                        inputs={'blocking_queue': [queue_name]},
                        outputs={'Out': [reader_var]},
                        attrs={
                            'shape_concat': shape_concat,
                            'lod_levels': lod_levels,
                            'dtypes': dtype_int,
                            'need_check_feed': need_check_feed,
                            'ranks': ranks
                        })
S
sneaxiy 已提交
1344

1345 1346 1347
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1359

1360
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1361 1362

        if self._use_double_buffer:
1363 1364
            double_buffer_reader = double_buffer(reader,
                                                 name=double_buffer_name)
S
sneaxiy 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1375 1376
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1377 1378 1379 1380 1381 1382 1383 1384

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1385

Z
Zeng Jinle 已提交
1386 1387
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1388
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1389
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1390

Z
Zeng Jinle 已提交
1391
        self._init_iterable()
S
sneaxiy 已提交
1392
        self._start()
Z
Zeng Jinle 已提交
1393 1394 1395 1396
        return self

    def __next__(self):
        try:
1397
            if self._return_list:
1398 1399 1400 1401
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1402
            else:
1403
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1404 1405 1406 1407 1408 1409
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1410 1411
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1412 1413

    def reset(self):
1414 1415
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1416 1417

    def _start(self):
1418

1419
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1420
            try:
1421 1422 1423
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

1424 1425 1426 1427
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1428 1429 1430 1431
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1432
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1445
                self._queue.kill()
Z
Zeng Jinle 已提交
1446
                self._thread = None
1447
                logging.warning('Your reader has raised an exception!')
Z
Zeng Jinle 已提交
1448 1449
                six.reraise(*sys.exc_info())

1450 1451
        self._thread = threading.Thread(target=__thread_main__,
                                        args=(_current_expected_place(), ))
Z
Zeng Jinle 已提交
1452 1453
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1454

S
sneaxiy 已提交
1455
    def _reset(self):
1456
        self._queue.close()
1457
        self._exited = True
Z
Zeng Jinle 已提交
1458 1459 1460 1461
        thread = self._thread
        if thread is not None:
            thread.join()

1462
        self._exited = False
1463 1464
        self._reader.reset()

Z
Zeng Jinle 已提交
1465 1466 1467 1468 1469 1470
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1471 1472 1473 1474
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1475 1476 1477 1478 1479 1480 1481
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1482 1483 1484 1485
            self.set_sample_list_generator(paddle.batch(reader,
                                                        batch_size=batch_size,
                                                        drop_last=drop_last),
                                           places=places)
1486
        else:
1487 1488 1489 1490 1491
            reader = BatchedTensorProvider(feed_list=self._feed_list,
                                           place=core.CPUPlace(),
                                           batch_size=batch_size,
                                           generator=reader,
                                           drop_last=drop_last)
1492
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1493 1494 1495
        return self

    def set_sample_list_generator(self, reader, places=None):
1496 1497 1498 1499
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1500
        with program_guard(Program(), Program()):
1501 1502
            feeder = DataFeeder(feed_list=self._feed_list,
                                place=core.CPUPlace())
1503
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1504

1505 1506 1507
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1508 1509 1510 1511 1512

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1513 1514 1515 1516
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1529
    r"""
Z
Zeng Jinle 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1551
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1552 1553 1554 1555 1556
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1557 1558 1559 1560
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1580 1581 1582 1583 1584
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1596 1597
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1598 1599 1600 1601 1602 1603 1604 1605

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1606 1607
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1635 1636 1637 1638 1639
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1640 1641 1642
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1643 1644 1645
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1646 1647
               return reader

G
guofei 已提交
1648 1649 1650
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1651 1652 1653 1654

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1655 1656 1657 1658 1659 1660
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1661 1662
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1663
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
1702 1703 1704
        self._loader = DataLoader.from_generator(feed_list, capacity,
                                                 use_double_buffer, iterable,
                                                 return_list)
Z
Zeng Jinle 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1719 1720

    def start(self):
S
add doc  
sneaxiy 已提交
1721 1722 1723
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1724
        
G
guofei 已提交
1725 1726
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1727
    
H
Huihuang Zheng 已提交
1728 1729 1730 1731
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1732 1733 1734 1735 1736 1737
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1738
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1739 1740 1741 1742
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1743
                executor = fluid.Executor(fluid.CPUPlace())
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1754 1755
	    '''
        self._loader.start()
S
sneaxiy 已提交
1756

S
sneaxiy 已提交
1757
    def reset(self):
S
add doc  
sneaxiy 已提交
1758 1759 1760
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1761 1762 1763 1764
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1765 1766 1767 1768
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1769 1770 1771 1772 1773 1774
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1775
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1776 1777 1778 1779
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1780
                executor = fluid.Executor(fluid.CPUPlace())
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1791
        '''
Z
Zeng Jinle 已提交
1792
        self._loader.reset()
S
sneaxiy 已提交
1793

S
sneaxiy 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1803
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1804 1805 1806 1807

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1808
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1809 1810 1811

        Args:
            sample_generator (generator): Python generator that yields
1812
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1813 1814 1815 1816 1817
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1818 1819 1820 1821

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1822 1823 1824
                import paddle.fluid as fluid
                import numpy as np

1825 1826 1827
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1828 1829 1830 1831 1832
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1844 1845
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1846 1847 1848 1849 1850
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1851 1852 1853 1854
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1855 1856 1857

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1858
                        executor.run(feed=data, fetch_list=[loss])
1859
    
S
sneaxiy 已提交
1860
        '''
Z
Zeng Jinle 已提交
1861 1862
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1863

S
sneaxiy 已提交
1864
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1865 1866 1867 1868
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1869
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1870 1871 1872 1873
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1874 1875 1876 1877
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1878 1879 1880 1881
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1882 1883 1884 1885
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1886 1887 1888 1889
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1890 1891 1892 1893 1894
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1905 1906
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1907 1908 1909 1910 1911
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1912 1913 1914 1915 1916
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1917 1918 1919

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1920
                        executor.run(feed=data, fetch_list=[loss])
1921
                 
S
add doc  
sneaxiy 已提交
1922
        '''
Z
Zeng Jinle 已提交
1923
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1924

S
sneaxiy 已提交
1925
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1926 1927 1928 1929
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1930
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1931 1932 1933 1934 1935 1936

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1937
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1938
                be provided when PyReader is iterable.
1939 1940 1941 1942

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1943 1944 1945
                import paddle.fluid as fluid
                import numpy as np

1946 1947 1948
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1949 1950 1951 1952 1953
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1954 1955 1956 1957 1958 1959 1960 1961

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1962 1963
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1964 1965 1966
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1967 1968
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1969 1970 1971
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1972 1973 1974 1975 1976
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1977 1978 1979

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1980
                        executor.run(feed=data, fetch_list=[loss])
1981

S
add doc  
sneaxiy 已提交
1982
        '''
Z
Zeng Jinle 已提交
1983 1984 1985 1986
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
1987

Z
Zeng Jinle 已提交
1988
    def __init__(self, dataset, places, drop_last):
1989 1990
        assert isinstance(dataset, paddle.distributed.fleet.dataset.DatasetBase
                          ), "dataset must be type of DatasetBase"
J
Jiabin Yang 已提交
1991
        assert not _non_static_mode(
Z
Zeng Jinle 已提交
1992
        ), "DatasetLoader is not supported in dygraph mode yet"
1993 1994 1995 1996
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1997 1998 1999 2000 2001 2002 2003

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
2004 2005 2006
            logging.warn(
                'thread_num {} which is set in Dataset is ignored'.format(
                    dataset.thread_num))
Z
Zeng Jinle 已提交
2007

2008
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
2009

2010 2011 2012 2013 2014
        if isinstance(dataset, paddle.distributed.fleet.dataset.InMemoryDataset
                      ) and dataset.queue_num > thread_num:
            logging.warn(
                "queue_num {} which is set in Dataset is ignored".format(
                    dataset.queue_num))
2015
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2016 2017 2018 2019 2020 2021 2022 2023

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
2024 2025
            dataset.dataset, use_slots, _convert_places(places),
            dataset.proto_desc.batch_size, drop_last)
Z
Zeng Jinle 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()