reader.py 74.7 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
from .framework import _get_paddle_place, _get_paddle_place_list
31
from paddle.fluid.framework import _set_expected_place, _current_expected_place
32
import logging
33
import warnings
S
sneaxiy 已提交
34

35
### Dygraph DataLoader configs ###
36
import os
37 38
import multiprocessing
import signal
39

40
# NOTE: queue has a different name in python2 and python3
41
if six.PY2:
42 43 44
    import Queue as queue
else:
    import queue
45

46 47 48
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

49
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
50 51

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
52

53
KEEP_DATA_LOADER_ORDER = True
54
USE_PINNED_MEMORY = None
55 56 57 58 59 60 61 62 63 64


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
65

66 67 68 69 70 71 72 73 74
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
114 115 116
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
117

Z
Zeng Jinle 已提交
118 119
    def __call__(self):
        return self
S
sneaxiy 已提交
120

Z
Zeng Jinle 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

136 137 138 139 140 141 142 143 144 145 146 147
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
148 149

class DataLoader(object):
150 151 152 153 154 155 156 157
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
158
    DataLoader supports map-style dataset and iterable-style dataset.
159

K
Kaipeng Deng 已提交
160 161 162 163 164 165 166
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
167

168 169 170 171 172 173
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


189 190
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
191 192
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
193 194
        feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
            The Tensors should be created by :code:`paddle.static.data()`.
195 196
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
197
        places(list(Place)|tuple(Place)|list(str)|optional): a list of Place,
198 199
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
200 201 202
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
203 204
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
205
            value on each device would be a dict of str -> Tensor, where
206
            the key of the dict is the name of each fed Tensors. If 
207
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
208
            be a list(Tensor). :attr:`return_list` can only be True
209
            in dynamic graph mode. Default True.
210 211 212
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
213
        batch_size(int|None): sample number in a mini-batch, a substitution
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
247
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
248 249 250 251 252 253

    Examples:
        
        .. code-block:: python

            import numpy as np
254 255

            import paddle
K
Kaipeng Deng 已提交
256 257
            import paddle.nn as nn
            import paddle.nn.functional as F
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

280 281
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
282
            class SimpleNet(nn.Layer):
283 284
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
285
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
286 287 288 289

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
290 291 292
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
293 294

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
295
                                batch_size=BATCH_SIZE,
296 297 298 299 300
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
301 302 303 304 305 306 307 308
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
309 310


311 312 313 314
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

315 316 317 318 319 320
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
321
                 return_list=True,
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

346 347
        if places is None:
            places = _current_expected_place()
348 349 350 351
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
352 353 354 355 356
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
357 358 359
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
360 361 362 363 364 365 366 367 368 369
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

370 371 372 373 374 375 376 377 378 379 380 381
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

382 383 384 385 386
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
387 388 389 390
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
391
        else:
392 393
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
394
                "batch_sampler is not given"
395
            self.batch_size = batch_size
396 397 398 399 400 401 402 403 404
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
405

406 407
        self.auto_collate_batch = self.batch_sampler is not None

408 409 410 411 412
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

413
    def __len__(self):
414 415 416
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
417
            if self.auto_collate_batch:
418
                return len(self.batch_sampler)
419 420
            else:
                return len(self.dataset)
421 422 423 424 425 426 427 428 429 430

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
431 432 433 434 435
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
436
                       return_list=False,
437 438
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
439
        """
K
Kaipeng Deng 已提交
440 441 442 443
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

444 445 446
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
447 448 449 450 451 452 453 454
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
455
        
Z
Zeng Jinle 已提交
456 457 458 459 460
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
461
        process.
Z
Zeng Jinle 已提交
462 463

        Args:  
464 465
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
479
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
480 481
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
482 483 484 485 486 487
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
488 489 490 491 492 493 494
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
495 496 497 498

        Returns:
            loader (DataLoader): the created DataLoader object.

499
        Examples 1:
Z
Zeng Jinle 已提交
500 501
            
            .. code-block:: python
S
sneaxiy 已提交
502

503 504 505
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
506
                import numpy as np
507

508 509 510 511 512
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
513 514 515 516 517 518 519 520 521 522 523
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

524 525
                paddle.enable_static()

Z
Zeng Jinle 已提交
526
                def simple_net(image, label):
527 528 529 530
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
570

Z
Zeng Jinle 已提交
571
                    return __reader__
572

Z
Zeng Jinle 已提交
573 574 575 576 577
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
578

Z
Zeng Jinle 已提交
579 580 581 582 583 584 585
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
586
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
587 588 589 590 591 592 593 594 595 596 597
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
598

599 600
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
601

Z
Zeng Jinle 已提交
602
                # Define DataLoader 
603
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
604

Z
Zeng Jinle 已提交
605 606
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
607

Z
Zeng Jinle 已提交
608 609 610
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
611 612
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
613 614
                # 
                # If DataLoader is not iterable, places can be None.
615
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
616
                set_data_source(loader, places)
S
sneaxiy 已提交
617

618 619
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
620

621
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
622

Z
Zeng Jinle 已提交
623 624 625 626 627 628
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


629 630 631 632
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
633
                '''
634
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
635
                '''
636
                import numpy as np
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
701 702 703

            .. code-block:: python

704 705 706 707 708
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
709 710 711 712 713 714
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

715 716
                paddle.enable_static()

717 718 719 720 721 722
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

723
                x = static.data(name='x', shape=[None], dtype='float32')  
724 725 726
                y = x * x

                def run_inference(drop_last): 
727
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
728
                            capacity=8, drop_last=drop_last)
729
                    loader.set_batch_generator(batch_generator, static.cpu_places())
730

731 732
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
748
        """
749 750 751 752 753 754
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
755
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
756 757 758 759

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
760 761 762 763
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
764 765
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
766

Z
Zeng Jinle 已提交
767 768
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
769 770 771
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
772 773 774
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
775

Z
Zeng Jinle 已提交
776 777 778
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
779

Z
Zeng Jinle 已提交
780 781 782
        Examples:

            .. code-block:: python
783

784 785 786 787
                import paddle
                import paddle.static as static

                paddle.enable_static()
788

789 790
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
791

792 793 794 795 796
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
797
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
798

799
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
800 801
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
802

S
sneaxiy 已提交
803

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
829 830
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
831 832 833
            )
        self._iterable = True
        if not return_list:
834 835
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
836 837 838 839 840 841 842
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
843 844
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
861 862
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
863 864 865 866 867 868 869 870 871

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

872 873 874 875 876 877 878 879 880 881
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

882 883 884 885 886 887 888 889 890 891 892
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
893
            core._erase_process_pids(id(self))
894

895 896 897 898 899 900 901 902 903
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
904
            core.Variable(), self._capacity, False)
905
        self._reader = None
906 907
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
908 909
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
910 911 912

    def _start(self):
        if self._use_multiprocess:
913 914 915
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
916
            self._data_queue = multiprocessing.Queue(self._capacity)
917 918 919
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
920
            self._process = multiprocessing.Process(
921 922
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
923 924 925 926 927 928 929 930 931
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
932 933
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
934 935 936 937

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
938 939
                target=self._reader_thread_loop_for_multiprocess,
                args=(_current_expected_place(), ))
940 941 942
            self._thread.daemon = True
            self._thread.start()
        else:
943
            self._thread = threading.Thread(
944 945
                target=self._reader_thread_loop_for_singleprocess,
                args=(_current_expected_place(), ))
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

971 972 973 974 975 976 977 978 979
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

980 981 982 983
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
        _set_expected_place(legacy_expected_place)

984 985 986 987 988 989 990
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
991 992 993 994 995 996 997
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
998 999 1000 1001
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1002
                self._exit_thread_unexpectedly()
1003 1004
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1005
                )
1006
                six.reraise(*sys.exc_info())
1007 1008

            if not self._thread_done_event.is_set():
1009
                if tensor_list is not None:
1010 1011
                    try:
                        array = core.LoDTensorArray()
1012 1013
                        for tensor in tensor_list:
                            array.append(tensor)
1014 1015 1016
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1017
                        self._exit_thread_unexpectedly()
1018 1019
                        six.reraise(*sys.exc_info())
                else:
1020
                    self._exit_thread_expectedly()
1021

1022
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1023
        try:
1024 1025 1026
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
            _set_expected_place(legacy_expected_place)

1027 1028 1029 1030
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1031
                        item = self._check_input_array(item)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1056 1057 1058 1059
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1060 1061 1062 1063 1064 1065 1066
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
1067 1068 1069 1070 1071
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1087 1088 1089 1090
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1091
        self._batch_reader = reader
1092 1093
        if places is None:
            places = _current_expected_place()
1094 1095
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1096
            "Number of places must be 1 in imperative mode"
1097 1098 1099
        return self


Z
Zeng Jinle 已提交
1100
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
1101
    def __init__(self,
1102 1103
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1104
                 use_double_buffer=True,
1105
                 iterable=True,
1106 1107
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1108
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1109
        self._places = None
S
sneaxiy 已提交
1110
        self._thread = None
1111
        self._queue = None
1112
        self._feed_list = feed_list
1113 1114 1115
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1116 1117
        if not capacity:
            raise ValueError("Please give value to capacity.")
1118 1119 1120 1121
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1122 1123 1124 1125
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1126

Z
Zeng Jinle 已提交
1127
    def _wait_thread_ends(self):
1128
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1129 1130 1131 1132 1133 1134 1135 1136
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1137 1138 1139 1140 1141 1142
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1143 1144
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1145
        self._reader = None
S
sneaxiy 已提交
1146
        self._reader = core.create_py_reader(
1147
            self.queue, self._var_names, self._shapes, self._dtypes,
1148
            self._need_check_feed, self._places, self._use_double_buffer,
1149
            self._drop_last, False)
S
sneaxiy 已提交
1150 1151 1152 1153 1154 1155 1156

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1157
        need_check_feed = []
S
sneaxiy 已提交
1158 1159 1160 1161 1162 1163 1164

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1165
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1166

Z
Zeng Jinle 已提交
1167 1168 1169 1170
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1171

S
sneaxiy 已提交
1172
        var = global_scope().var(queue_name)
1173 1174 1175 1176 1177 1178 1179
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1180

1181
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1182

1183
        dtype_int = [int(t) for t in dtypes]
1184
        block.append_op(
S
sneaxiy 已提交
1185 1186
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1187
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1188 1189 1190
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1191 1192
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1193 1194 1195
                'ranks': ranks
            })

1196 1197 1198
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1210

1211
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1226 1227
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1228 1229 1230 1231 1232 1233 1234 1235

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1236

Z
Zeng Jinle 已提交
1237 1238
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1239
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1240
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1241

Z
Zeng Jinle 已提交
1242
        self._init_iterable()
S
sneaxiy 已提交
1243
        self._start()
Z
Zeng Jinle 已提交
1244 1245 1246 1247
        return self

    def __next__(self):
        try:
1248 1249
            if self._return_list:
                return self._reader.read_next_list()
1250
            else:
1251
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1252 1253 1254 1255 1256 1257
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1258 1259
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1260 1261

    def reset(self):
1262 1263
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1264 1265

    def _start(self):
1266
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1267
            try:
1268 1269 1270
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

1271 1272 1273 1274
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1275 1276 1277 1278
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1279
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1292
                self._queue.kill()
Z
Zeng Jinle 已提交
1293
                self._thread = None
1294
                logging.warning('Your reader has raised an exception!')
Z
Zeng Jinle 已提交
1295 1296
                six.reraise(*sys.exc_info())

1297 1298
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(), ))
Z
Zeng Jinle 已提交
1299 1300
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1301

S
sneaxiy 已提交
1302
    def _reset(self):
1303
        self._queue.close()
1304
        self._exited = True
Z
Zeng Jinle 已提交
1305 1306 1307 1308
        thread = self._thread
        if thread is not None:
            thread.join()

1309
        self._exited = False
1310 1311
        self._reader.reset()

Z
Zeng Jinle 已提交
1312 1313 1314 1315 1316 1317
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1318 1319 1320 1321
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1322 1323 1324 1325 1326 1327 1328
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1329 1330 1331 1332 1333
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1334 1335 1336 1337 1338 1339 1340
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1341 1342 1343
        return self

    def set_sample_list_generator(self, reader, places=None):
1344 1345 1346 1347
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1348 1349 1350 1351
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1352

1353 1354 1355
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1356 1357 1358 1359 1360

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1361 1362 1363 1364
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1377
    r"""
Z
Zeng Jinle 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1399
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1400 1401 1402 1403 1404
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1405 1406 1407 1408
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1428 1429 1430 1431 1432
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1444 1445
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1446 1447 1448 1449 1450 1451 1452 1453

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1454 1455
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1483 1484 1485 1486 1487
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1488 1489 1490
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1491 1492 1493
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1494 1495
               return reader

G
guofei 已提交
1496 1497 1498
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1499 1500 1501 1502

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1503 1504 1505 1506 1507 1508
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1509 1510
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1511
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1566 1567

    def start(self):
S
add doc  
sneaxiy 已提交
1568 1569 1570
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1571
        
G
guofei 已提交
1572 1573
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1574
    
H
Huihuang Zheng 已提交
1575 1576 1577 1578
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1579 1580 1581 1582 1583 1584
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1585
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1586 1587 1588 1589
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1590
                executor = fluid.Executor(fluid.CPUPlace())
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1601 1602
	    '''
        self._loader.start()
S
sneaxiy 已提交
1603

S
sneaxiy 已提交
1604
    def reset(self):
S
add doc  
sneaxiy 已提交
1605 1606 1607
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1608 1609 1610 1611
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1612 1613 1614 1615
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1616 1617 1618 1619 1620 1621
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1622
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1623 1624 1625 1626
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1627
                executor = fluid.Executor(fluid.CPUPlace())
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1638
        '''
Z
Zeng Jinle 已提交
1639
        self._loader.reset()
S
sneaxiy 已提交
1640

S
sneaxiy 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1650
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1651 1652 1653 1654

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1655
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1656 1657 1658

        Args:
            sample_generator (generator): Python generator that yields
1659
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1660 1661 1662 1663 1664
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1665 1666 1667 1668

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1669 1670 1671
                import paddle.fluid as fluid
                import numpy as np

1672 1673 1674
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1675 1676 1677 1678 1679
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1691 1692
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1693 1694 1695 1696 1697
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1698 1699 1700 1701
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1702 1703 1704

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1705
                        executor.run(feed=data, fetch_list=[loss])
1706
    
S
sneaxiy 已提交
1707
        '''
Z
Zeng Jinle 已提交
1708 1709
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1710

S
sneaxiy 已提交
1711
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1712 1713 1714 1715
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1716
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1717 1718 1719 1720
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1721 1722 1723 1724
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1725 1726 1727 1728
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1729 1730 1731 1732
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1733 1734 1735 1736
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1737 1738 1739 1740 1741
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1752 1753
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1754 1755 1756 1757 1758
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1759 1760 1761 1762 1763
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1764 1765 1766

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1767
                        executor.run(feed=data, fetch_list=[loss])
1768
                 
S
add doc  
sneaxiy 已提交
1769
        '''
Z
Zeng Jinle 已提交
1770
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1771

S
sneaxiy 已提交
1772
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1773 1774 1775 1776
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1777
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1778 1779 1780 1781 1782 1783

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1784
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1785
                be provided when PyReader is iterable.
1786 1787 1788 1789

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1790 1791 1792
                import paddle.fluid as fluid
                import numpy as np

1793 1794 1795
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1796 1797 1798 1799 1800
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1801 1802 1803 1804 1805 1806 1807 1808

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1809 1810
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1811 1812 1813
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1814 1815
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1816 1817 1818
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1819 1820 1821 1822 1823
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1824 1825 1826

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1827
                        executor.run(feed=data, fetch_list=[loss])
1828

S
add doc  
sneaxiy 已提交
1829
        '''
Z
Zeng Jinle 已提交
1830 1831 1832 1833 1834
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1835
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1836 1837 1838
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"
1839 1840 1841 1842
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

1853
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
1854

1855
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1856 1857 1858
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
1859
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()