reader.py 70.5 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
import logging
31
import warnings
S
sneaxiy 已提交
32

33
### Dygraph DataLoader configs ###
34
import os
35 36
import multiprocessing
import signal
37

38
# NOTE: queue has a different name in python2 and python3
39
if six.PY2:
40 41 42
    import Queue as queue
else:
    import queue
43

44 45 46
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

47
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
48 49

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51
KEEP_DATA_LOADER_ORDER = True
52
USE_PINNED_MEMORY = None
53 54 55 56 57 58 59 60 61 62


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
63

64 65 66 67 68 69 70 71 72
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
112 113 114
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
115

Z
Zeng Jinle 已提交
116 117
    def __call__(self):
        return self
S
sneaxiy 已提交
118

Z
Zeng Jinle 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

134 135 136 137 138 139 140 141 142 143 144 145
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
146 147

class DataLoader(object):
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

    DataLoader only supports map-style dataset(can get a sample from
    dataset with a given index) currently, for a map-style dataset,
    please see :code:`paddle.io.Dataset`.

    batch_sampler please see :code:`paddle.io.BatchSampler`

    Args:  
        dataset(Dataset): the dataset to load data from, should be an
164 165 166
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
        feed_list (list(Tensor)|tuple(Tensor)): feed variable list.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            The variables should be created by :code:`fluid.data()`.
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
        places(list(Place)|tuple(Place)): a list of Place, to put data
            onto, :attr:`places` must be set in both static graph and 
            dynamic graph mode, in dynamic graph mode, place number must
            be 1. Default None.
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
            value on each device would be a dict of str -> LoDTensor, where
            the key of the dict is the name of each fed variables. If 
            :attr:`return_list=True`, the return value on each device would
            be a list(LoDTensor). :attr:`return_list` can only be True
            in dynamic graph mode. Default False.
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
        batch_size(int): sample number in a mini-batch, a substitution
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
        DataLoader: an iterable object for data iterating

    Examples:
        
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            USE_GPU = False # whether use GPU to run model

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

            # get places
            places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()

            # -------------------- static graph ---------------------

            def simple_net(image, label):
                fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
                cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                loss = fluid.layers.reduce_mean(cross_entropy)
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
                return loss

            image = fluid.data(name='image', shape=[None, IMAGE_SIZE], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')

            loss = simple_net(image, label)

            exe = fluid.Executor(places[0])
            exe.run(fluid.default_startup_program())

            prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)

            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

            loader = DataLoader(dataset,
                                feed_list=[image, label],
                                places=places,
                                batch_size=BATCH_SIZE, 
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
                for i, data in enumerate(loader()):
                    l = exe.run(prog, feed=data, fetch_list=[loss], return_numpy=True)
                    print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))

            # -------------------------------------------------------
                
            # --------------------- dygraph mode --------------------

            class SimpleNet(fluid.dygraph.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')

                def forward(self, image, label=None):
                    return self.fc(image)

            with fluid.dygraph.guard(places[0]):
                simple_net = SimpleNet()
                opt = fluid.optimizer.SGD(learning_rate=1e-3,
                                          parameter_list=simple_net.parameters())

                loader = DataLoader(dataset,
                                    places=places[0],
                                    batch_size=BATCH_SIZE,
                                    shuffle=True,
                                    drop_last=True,
                                    num_workers=2)

                for e in range(EPOCH_NUM):
                    for i, (image, label) in enumerate(loader()):
                        out = simple_net(image)
                        loss = fluid.layers.cross_entropy(out, label)
                        avg_loss = fluid.layers.reduce_mean(loss)
                        avg_loss.backward()
                        opt.minimize(avg_loss)
                        simple_net.clear_gradients()
                        print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))

            # -------------------------------------------------------

324 325 326 327
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
                 return_list=False,
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

        assert places is not None, "places cannot be None"
        self.places = _convert_places(places)
        if in_dygraph_mode():
            assert len(self.places) == 1, \
                    "Number of places must be 1 in dygraph mode"

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
368 369 370
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
371 372 373 374 375 376 377 378 379 380
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

381 382 383 384 385 386 387 388 389 390 391 392
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

393 394 395 396 397 398 399 400 401 402 403 404
        if batch_sampler is not None:
            assert isinstance(batch_sampler, BatchSampler), \
                "batch_sampler should be None or subclass instance " \
                "of paddle.io.BatchSampler"
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
        else:
            assert batch_size is not None and batch_size > 0, \
                "batch_size should be a positive value when " \
                "batch_sampler is not given"
405 406 407 408 409 410 411 412 413
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
414

415 416 417 418 419
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

420 421 422 423 424 425 426 427 428 429 430 431
    def __len__(self):
        return len(self.batch_sampler)

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
432 433 434 435 436
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
437
                       return_list=False,
438 439
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
440
        """
441 442 443
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
444 445 446 447 448 449 450 451
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
452
        
Z
Zeng Jinle 已提交
453 454 455 456 457 458 459 460 461 462 463 464
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
465
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
479
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
480 481
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
482 483 484 485 486 487
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
488 489 490 491 492 493 494
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
495 496 497 498

        Returns:
            loader (DataLoader): the created DataLoader object.

499
        Examples 1:
Z
Zeng Jinle 已提交
500 501
            
            .. code-block:: python
S
sneaxiy 已提交
502

Z
Zeng Jinle 已提交
503 504
                import paddle.fluid as fluid
                import numpy as np
505

Z
Zeng Jinle 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
561

Z
Zeng Jinle 已提交
562
                    return __reader__
563

Z
Zeng Jinle 已提交
564 565 566 567 568
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
569

Z
Zeng Jinle 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
589

590 591
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
592

Z
Zeng Jinle 已提交
593 594
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
595

Z
Zeng Jinle 已提交
596 597
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
598

Z
Zeng Jinle 已提交
599 600 601 602 603 604 605 606 607
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
608

Z
Zeng Jinle 已提交
609 610
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
611

Z
Zeng Jinle 已提交
612
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
613

Z
Zeng Jinle 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

        Examples 2:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

                x = fluid.data(name='x', shape=[None], dtype='float32')  
                y = x * x

                def run_inference(drop_last): 
                    loader = fluid.io.DataLoader.from_generator(feed_list=[x],
                            capacity=8, drop_last=drop_last)
                    loader.set_batch_generator(batch_generator, fluid.cpu_places())

                    exe = fluid.Executor(fluid.CPUPlace())
                    prog = fluid.CompiledProgram(fluid.default_main_program())
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
674
        """
675 676 677 678 679 680
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
681
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
682 683 684 685 686 687

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
688

Z
Zeng Jinle 已提交
689 690 691 692 693 694 695
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
696

Z
Zeng Jinle 已提交
697 698 699
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
700

Z
Zeng Jinle 已提交
701 702 703
        Examples:

            .. code-block:: python
704

Z
Zeng Jinle 已提交
705
                import paddle.fluid as fluid
706

707 708
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
709

Z
Zeng Jinle 已提交
710 711 712 713 714
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
715

Z
Zeng Jinle 已提交
716 717 718
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
719

S
sneaxiy 已提交
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
746 747
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
748 749 750
            )
        self._iterable = True
        if not return_list:
751 752
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
753 754 755 756 757 758 759
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
760 761
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
778 779
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
780 781 782 783 784 785 786 787 788

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

789 790 791 792 793 794 795 796 797 798
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

799 800 801 802 803 804 805 806 807 808 809
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
810
            core._erase_process_pids(id(self))
811

812 813 814 815 816 817 818 819 820
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
821
            core.Variable(), self._capacity, False)
822
        self._reader = None
823 824
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
825 826
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
827 828 829

    def _start(self):
        if self._use_multiprocess:
830 831 832
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
833
            self._data_queue = multiprocessing.Queue(self._capacity)
834 835 836
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
837
            self._process = multiprocessing.Process(
838 839
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
840 841 842 843 844 845 846 847 848
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
849 850
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
851 852 853 854

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
855
                target=self._reader_thread_loop_for_multiprocess)
856 857 858
            self._thread.daemon = True
            self._thread.start()
        else:
859 860
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

886 887 888 889 890 891 892 893 894
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

895
    def _reader_thread_loop_for_multiprocess(self):
896 897 898 899 900 901 902
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
903 904 905 906 907 908 909
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
910 911 912 913
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
914
                self._exit_thread_unexpectedly()
915 916
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
917
                )
918
                six.reraise(*sys.exc_info())
919 920

            if not self._thread_done_event.is_set():
921
                if tensor_list is not None:
922 923
                    try:
                        array = core.LoDTensorArray()
924 925
                        for tensor in tensor_list:
                            array.append(tensor)
926 927 928
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
929
                        self._exit_thread_unexpectedly()
930 931
                        six.reraise(*sys.exc_info())
                else:
932
                    self._exit_thread_expectedly()
933

934
    def _reader_thread_loop_for_singleprocess(self):
935 936 937 938 939
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
940
                        item = self._check_input_array(item)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
988 989
        if places is None:
            places = _current_expected_place()
990 991
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
992
            "Number of places must be 1 in imperative mode"
993 994 995
        return self


Z
Zeng Jinle 已提交
996
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
997
    def __init__(self,
998 999
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1000
                 use_double_buffer=True,
1001
                 iterable=True,
1002 1003
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1004
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1005
        self._places = None
S
sneaxiy 已提交
1006
        self._thread = None
1007
        self._queue = None
1008
        self._feed_list = feed_list
1009 1010 1011
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1012 1013
        if not capacity:
            raise ValueError("Please give value to capacity.")
1014 1015 1016 1017
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1018 1019 1020 1021
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1022

Z
Zeng Jinle 已提交
1023
    def _wait_thread_ends(self):
1024
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1025 1026 1027 1028 1029 1030 1031 1032
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1033 1034 1035 1036 1037 1038
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1039 1040
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1041
        self._reader = None
S
sneaxiy 已提交
1042
        self._reader = core.create_py_reader(
1043
            self.queue, self._var_names, self._shapes, self._dtypes,
1044
            self._need_check_feed, self._places, self._use_double_buffer,
1045
            self._drop_last, False)
S
sneaxiy 已提交
1046 1047 1048 1049 1050 1051 1052

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1053
        need_check_feed = []
S
sneaxiy 已提交
1054 1055 1056 1057 1058 1059 1060

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1061
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1062

Z
Zeng Jinle 已提交
1063 1064 1065 1066
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1067

S
sneaxiy 已提交
1068
        var = global_scope().var(queue_name)
1069 1070 1071 1072 1073 1074 1075
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1076

1077
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1078

1079
        dtype_int = [int(t) for t in dtypes]
1080
        block.append_op(
S
sneaxiy 已提交
1081 1082
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1083
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1084 1085 1086
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1087 1088
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1089 1090 1091
                'ranks': ranks
            })

1092 1093 1094
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1106

1107
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1122 1123
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1124 1125 1126 1127 1128 1129 1130 1131

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1132

Z
Zeng Jinle 已提交
1133 1134
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1135
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1136
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1137

Z
Zeng Jinle 已提交
1138
        self._init_iterable()
S
sneaxiy 已提交
1139
        self._start()
Z
Zeng Jinle 已提交
1140 1141 1142 1143
        return self

    def __next__(self):
        try:
1144 1145
            if self._return_list:
                return self._reader.read_next_list()
1146
            else:
1147
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1148 1149 1150 1151 1152 1153
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1154 1155
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1156 1157

    def reset(self):
1158 1159
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1160 1161 1162 1163

    def _start(self):
        def __thread_main__():
            try:
1164 1165 1166 1167
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1168 1169 1170 1171
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1172
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1185
                self._queue.kill()
Z
Zeng Jinle 已提交
1186 1187 1188 1189 1190 1191 1192
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1193

S
sneaxiy 已提交
1194
    def _reset(self):
1195
        self._queue.close()
1196
        self._exited = True
Z
Zeng Jinle 已提交
1197 1198 1199 1200
        thread = self._thread
        if thread is not None:
            thread.join()

1201
        self._exited = False
1202 1203
        self._reader.reset()

Z
Zeng Jinle 已提交
1204 1205 1206 1207 1208 1209
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1210 1211 1212 1213 1214 1215 1216
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1217 1218 1219 1220 1221
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1222 1223 1224 1225 1226 1227 1228
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1229 1230 1231
        return self

    def set_sample_list_generator(self, reader, places=None):
1232 1233 1234 1235
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1236

1237 1238 1239
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1279
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1280 1281 1282 1283 1284
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1285 1286 1287 1288
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1308 1309 1310 1311 1312
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1324 1325
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1326 1327 1328 1329 1330 1331 1332 1333

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1334 1335
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1363 1364 1365 1366 1367
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1368 1369 1370
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1371 1372 1373
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1374 1375
               return reader

G
guofei 已提交
1376 1377 1378
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1379 1380 1381 1382

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1383 1384 1385 1386 1387 1388
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1389 1390
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1391
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1446 1447

    def start(self):
S
add doc  
sneaxiy 已提交
1448 1449 1450
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1451
        
G
guofei 已提交
1452 1453
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1454
    
H
Huihuang Zheng 已提交
1455 1456 1457 1458
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1459 1460 1461 1462 1463 1464
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1465
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1466 1467 1468 1469
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1470
                executor = fluid.Executor(fluid.CPUPlace())
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1481 1482
	    '''
        self._loader.start()
S
sneaxiy 已提交
1483

S
sneaxiy 已提交
1484
    def reset(self):
S
add doc  
sneaxiy 已提交
1485 1486 1487
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1488 1489 1490 1491
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1492 1493 1494 1495
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1496 1497 1498 1499 1500 1501
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1502
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1503 1504 1505 1506
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1507
                executor = fluid.Executor(fluid.CPUPlace())
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1518
        '''
Z
Zeng Jinle 已提交
1519
        self._loader.reset()
S
sneaxiy 已提交
1520

S
sneaxiy 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1530
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1531 1532 1533 1534

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1535
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1536 1537 1538

        Args:
            sample_generator (generator): Python generator that yields
1539
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1540 1541 1542 1543 1544
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1545 1546 1547 1548

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1549 1550 1551
                import paddle.fluid as fluid
                import numpy as np

1552 1553 1554
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1555 1556 1557 1558 1559
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1571 1572
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1573 1574 1575 1576 1577
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1578 1579 1580 1581
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1582 1583 1584

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1585
                        executor.run(feed=data, fetch_list=[loss])
1586
    
S
sneaxiy 已提交
1587
        '''
Z
Zeng Jinle 已提交
1588 1589
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1590

S
sneaxiy 已提交
1591
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1592 1593 1594 1595
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1596
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1597 1598 1599 1600
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1601 1602 1603 1604
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1605 1606 1607 1608
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1609 1610 1611 1612
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1613 1614 1615 1616
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1617 1618 1619 1620 1621
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1632 1633
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1634 1635 1636 1637 1638
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1639 1640 1641 1642 1643
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1644 1645 1646

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1647
                        executor.run(feed=data, fetch_list=[loss])
1648
                 
S
add doc  
sneaxiy 已提交
1649
        '''
Z
Zeng Jinle 已提交
1650
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1651

S
sneaxiy 已提交
1652
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1653 1654 1655 1656
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1657
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1658 1659 1660 1661 1662 1663

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1664
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1665
                be provided when PyReader is iterable.
1666 1667 1668 1669

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1670 1671 1672
                import paddle.fluid as fluid
                import numpy as np

1673 1674 1675
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1676 1677 1678 1679 1680
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1681 1682 1683 1684 1685 1686 1687 1688

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1689 1690
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1691 1692 1693
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1694 1695
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1696 1697 1698
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1699 1700 1701 1702 1703
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1704 1705 1706

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1707
                        executor.run(feed=data, fetch_list=[loss])
1708

S
add doc  
sneaxiy 已提交
1709
        '''
Z
Zeng Jinle 已提交
1710 1711 1712 1713 1714
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1715
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

1731
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()