reader.py 75.1 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
from .framework import _get_paddle_place, _get_paddle_place_list
31
from paddle.fluid.framework import _set_expected_place, _current_expected_place
32
import logging
33
import warnings
S
sneaxiy 已提交
34

35
### Dygraph DataLoader configs ###
36
import os
37 38
import multiprocessing
import signal
39

40
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
41
import queue
42

43 44 45
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

46
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
47 48

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
49

50
KEEP_DATA_LOADER_ORDER = True
51
USE_PINNED_MEMORY = None
52 53 54 55 56 57 58 59 60 61


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
62

63 64 65 66 67 68 69 70 71
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
111 112 113
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
114

Z
Zeng Jinle 已提交
115 116
    def __call__(self):
        return self
S
sneaxiy 已提交
117

Z
Zeng Jinle 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

133 134 135 136 137 138 139 140 141 142 143 144
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
145 146

class DataLoader(object):
147 148 149 150 151 152 153 154
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
155
    DataLoader supports map-style dataset and iterable-style dataset.
156

K
Kaipeng Deng 已提交
157 158 159 160 161 162 163
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
164

165 166 167 168 169 170
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


186 187
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
188 189
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
190 191
        feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
            The Tensors should be created by :code:`paddle.static.data()`.
192 193
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
194
        places(list(Place)|tuple(Place)|list(str)|optional): a list of Place,
195 196
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
197 198 199
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
200 201
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
202
            value on each device would be a dict of str -> Tensor, where
203
            the key of the dict is the name of each fed Tensors. If 
204
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
205
            be a list(Tensor). :attr:`return_list` can only be True
206
            in dynamic graph mode. Default True.
207 208 209
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
210
        batch_size(int|None): sample number in a mini-batch, a substitution
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
244
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
245 246 247 248 249 250

    Examples:
        
        .. code-block:: python

            import numpy as np
251 252

            import paddle
K
Kaipeng Deng 已提交
253 254
            import paddle.nn as nn
            import paddle.nn.functional as F
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

277 278
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
279
            class SimpleNet(nn.Layer):
280 281
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
282
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
283 284 285 286

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
287 288 289
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
290 291

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
292
                                batch_size=BATCH_SIZE,
293 294 295 296 297
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
298 299 300 301 302 303 304 305
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
306 307


308 309 310 311
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

312 313 314 315 316 317
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
318
                 return_list=True,
319 320 321 322 323 324 325 326 327
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
K
Kaipeng Deng 已提交
328 329
                 worker_init_fn=None,
                 persistent_workers=False):
330 331 332 333 334 335 336 337 338 339 340 341 342 343
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

344 345
        if places is None:
            places = _current_expected_place()
346 347 348 349
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
350 351 352 353 354
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
355 356 357
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
358 359 360 361 362 363 364 365 366 367
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

368 369 370 371 372 373 374 375 376 377 378 379
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

380 381 382 383 384
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
385 386 387 388
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
389
        else:
390 391
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
392
                "batch_sampler is not given"
393
            self.batch_size = batch_size
394 395 396 397 398 399 400 401 402
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
403

404
        self.drop_last = drop_last
405 406
        self.auto_collate_batch = self.batch_sampler is not None

407 408 409 410 411
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

K
Kaipeng Deng 已提交
412 413 414
        self._persistent_workers = persistent_workers
        self._iterator = None

415
    def __len__(self):
416 417 418
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
419
            if self.auto_collate_batch:
420
                return len(self.batch_sampler)
421 422
            else:
                return len(self.dataset)
423 424 425 426

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
427 428 429 430 431 432
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
433 434 435 436 437 438
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
439 440 441 442 443
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
444
                       return_list=False,
445 446
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
447
        """
K
Kaipeng Deng 已提交
448 449 450 451
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

452 453 454
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
455 456 457 458 459 460 461 462
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
463
        
Z
Zeng Jinle 已提交
464 465 466 467 468
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
469
        process.
Z
Zeng Jinle 已提交
470 471

        Args:  
472 473
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
487
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
488 489
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
490 491 492 493 494 495
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
496 497 498 499 500 501 502
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
503 504 505 506

        Returns:
            loader (DataLoader): the created DataLoader object.

507
        Examples 1:
Z
Zeng Jinle 已提交
508 509
            
            .. code-block:: python
S
sneaxiy 已提交
510

511 512 513
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
514
                import numpy as np
515

516 517 518 519 520
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
521 522 523 524 525 526 527 528 529 530 531
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

532 533
                paddle.enable_static()

Z
Zeng Jinle 已提交
534
                def simple_net(image, label):
535 536 537 538
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
578

Z
Zeng Jinle 已提交
579
                    return __reader__
580

Z
Zeng Jinle 已提交
581 582 583 584 585
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
586

Z
Zeng Jinle 已提交
587 588 589 590 591 592 593
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
594
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
595 596 597 598 599 600 601 602 603 604 605
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
606

607 608
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
609

Z
Zeng Jinle 已提交
610
                # Define DataLoader 
611
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
612

Z
Zeng Jinle 已提交
613 614
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
615

Z
Zeng Jinle 已提交
616 617 618
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
619 620
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
621 622
                # 
                # If DataLoader is not iterable, places can be None.
623
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
624
                set_data_source(loader, places)
S
sneaxiy 已提交
625

626 627
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
628

629
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
630

Z
Zeng Jinle 已提交
631 632 633 634 635 636
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


637 638 639 640
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
641
                '''
642
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
643
                '''
644
                import numpy as np
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
709 710 711

            .. code-block:: python

712 713 714 715 716
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
717 718 719 720 721 722
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

723 724
                paddle.enable_static()

725 726 727 728 729 730
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

731
                x = static.data(name='x', shape=[None], dtype='float32')  
732 733 734
                y = x * x

                def run_inference(drop_last): 
735
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
736
                            capacity=8, drop_last=drop_last)
737
                    loader.set_batch_generator(batch_generator, static.cpu_places())
738

739 740
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
756
        """
757 758 759 760 761 762
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
763
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
764 765 766 767

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
768 769 770 771
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
772 773
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
774

Z
Zeng Jinle 已提交
775 776
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
777 778 779
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
780 781 782
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
783

Z
Zeng Jinle 已提交
784 785 786
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
787

Z
Zeng Jinle 已提交
788 789 790
        Examples:

            .. code-block:: python
791

792 793 794 795
                import paddle
                import paddle.static as static

                paddle.enable_static()
796

797 798
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
799

800 801 802 803 804
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
805
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
806

807
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
808 809
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
810

S
sneaxiy 已提交
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
837 838
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
839 840 841
            )
        self._iterable = True
        if not return_list:
842 843
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
844 845 846 847 848 849 850
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
851 852
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
869 870
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
871 872 873 874 875 876 877 878 879

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

880 881 882 883 884 885 886 887 888 889
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

890 891 892 893 894 895 896 897 898 899 900
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
901
            core._erase_process_pids(id(self))
902

903 904 905 906 907 908 909 910 911
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
912
            core.Variable(), self._capacity, False)
913
        self._reader = None
914 915
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
916 917
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
918 919 920

    def _start(self):
        if self._use_multiprocess:
921 922 923
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
924
            self._data_queue = multiprocessing.Queue(self._capacity)
925 926 927
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
928
            self._process = multiprocessing.Process(
929 930
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
931 932 933 934 935 936 937 938 939
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
940 941
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
942 943 944 945

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
946 947
                target=self._reader_thread_loop_for_multiprocess,
                args=(_current_expected_place(), ))
948 949 950
            self._thread.daemon = True
            self._thread.start()
        else:
951
            self._thread = threading.Thread(
952 953
                target=self._reader_thread_loop_for_singleprocess,
                args=(_current_expected_place(), ))
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

979 980 981 982 983 984 985 986 987
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

988 989 990 991
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
        _set_expected_place(legacy_expected_place)

992 993 994 995 996 997 998
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
999 1000 1001 1002 1003 1004 1005
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1006 1007 1008 1009
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1010
                self._exit_thread_unexpectedly()
1011 1012
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1013
                )
1014
                six.reraise(*sys.exc_info())
1015 1016

            if not self._thread_done_event.is_set():
1017
                if tensor_list is not None:
1018 1019
                    try:
                        array = core.LoDTensorArray()
1020 1021
                        for tensor in tensor_list:
                            array.append(tensor)
1022 1023 1024
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1025
                        self._exit_thread_unexpectedly()
1026 1027
                        six.reraise(*sys.exc_info())
                else:
1028
                    self._exit_thread_expectedly()
1029

1030
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1031
        try:
1032 1033 1034
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
            _set_expected_place(legacy_expected_place)

1035 1036 1037 1038
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1039
                        item = self._check_input_array(item)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1064 1065 1066 1067
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1068 1069 1070 1071 1072 1073 1074
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
1075 1076 1077 1078 1079
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1095 1096 1097 1098
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1099
        self._batch_reader = reader
1100 1101
        if places is None:
            places = _current_expected_place()
1102 1103
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1104
            "Number of places must be 1 in imperative mode"
1105 1106 1107
        return self


Z
Zeng Jinle 已提交
1108
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
1109
    def __init__(self,
1110 1111
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1112
                 use_double_buffer=True,
1113
                 iterable=True,
1114 1115
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1116
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1117
        self._places = None
S
sneaxiy 已提交
1118
        self._thread = None
1119
        self._queue = None
1120
        self._feed_list = feed_list
1121 1122 1123
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1124 1125
        if not capacity:
            raise ValueError("Please give value to capacity.")
1126 1127 1128 1129
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1130 1131 1132 1133
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1134

Z
Zeng Jinle 已提交
1135
    def _wait_thread_ends(self):
1136
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1137 1138 1139 1140 1141 1142 1143 1144
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1145 1146 1147 1148 1149 1150
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1151 1152
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1153
        self._reader = None
S
sneaxiy 已提交
1154
        self._reader = core.create_py_reader(
1155
            self.queue, self._var_names, self._shapes, self._dtypes,
1156
            self._need_check_feed, self._places, self._use_double_buffer,
1157
            self._drop_last, False)
S
sneaxiy 已提交
1158 1159 1160 1161 1162 1163 1164

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1165
        need_check_feed = []
S
sneaxiy 已提交
1166 1167 1168 1169 1170 1171 1172

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1173
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1174

Z
Zeng Jinle 已提交
1175 1176 1177 1178
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1179

S
sneaxiy 已提交
1180
        var = global_scope().var(queue_name)
1181 1182 1183 1184 1185 1186 1187
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1188

1189
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1190

1191
        dtype_int = [int(t) for t in dtypes]
1192
        block.append_op(
S
sneaxiy 已提交
1193 1194
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1195
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1196 1197 1198
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1199 1200
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1201 1202 1203
                'ranks': ranks
            })

1204 1205 1206
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1218

1219
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1234 1235
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1236 1237 1238 1239 1240 1241 1242 1243

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1244

Z
Zeng Jinle 已提交
1245 1246
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1247
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1248
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1249

Z
Zeng Jinle 已提交
1250
        self._init_iterable()
S
sneaxiy 已提交
1251
        self._start()
Z
Zeng Jinle 已提交
1252 1253 1254 1255
        return self

    def __next__(self):
        try:
1256
            if self._return_list:
1257 1258 1259 1260
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1261
            else:
1262
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1263 1264 1265 1266 1267 1268
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1269 1270
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1271 1272

    def reset(self):
1273 1274
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1275 1276

    def _start(self):
1277
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1278
            try:
1279 1280 1281
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

1282 1283 1284 1285
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1286 1287 1288 1289
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1290
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1303
                self._queue.kill()
Z
Zeng Jinle 已提交
1304
                self._thread = None
1305
                logging.warning('Your reader has raised an exception!')
Z
Zeng Jinle 已提交
1306 1307
                six.reraise(*sys.exc_info())

1308 1309
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(), ))
Z
Zeng Jinle 已提交
1310 1311
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1312

S
sneaxiy 已提交
1313
    def _reset(self):
1314
        self._queue.close()
1315
        self._exited = True
Z
Zeng Jinle 已提交
1316 1317 1318 1319
        thread = self._thread
        if thread is not None:
            thread.join()

1320
        self._exited = False
1321 1322
        self._reader.reset()

Z
Zeng Jinle 已提交
1323 1324 1325 1326 1327 1328
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1329 1330 1331 1332
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1333 1334 1335 1336 1337 1338 1339
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1340 1341 1342 1343 1344
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1345 1346 1347 1348 1349 1350 1351
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1352 1353 1354
        return self

    def set_sample_list_generator(self, reader, places=None):
1355 1356 1357 1358
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1359 1360 1361 1362
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1363

1364 1365 1366
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1367 1368 1369 1370 1371

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1372 1373 1374 1375
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1388
    r"""
Z
Zeng Jinle 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1410
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1411 1412 1413 1414 1415
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1416 1417 1418 1419
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1439 1440 1441 1442 1443
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1455 1456
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1457 1458 1459 1460 1461 1462 1463 1464

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1465 1466
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1494 1495 1496 1497 1498
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1499 1500 1501
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1502 1503 1504
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1505 1506
               return reader

G
guofei 已提交
1507 1508 1509
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1510 1511 1512 1513

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1514 1515 1516 1517 1518 1519
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1520 1521
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1522
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1577 1578

    def start(self):
S
add doc  
sneaxiy 已提交
1579 1580 1581
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1582
        
G
guofei 已提交
1583 1584
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1585
    
H
Huihuang Zheng 已提交
1586 1587 1588 1589
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1590 1591 1592 1593 1594 1595
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1596
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1597 1598 1599 1600
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1601
                executor = fluid.Executor(fluid.CPUPlace())
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1612 1613
	    '''
        self._loader.start()
S
sneaxiy 已提交
1614

S
sneaxiy 已提交
1615
    def reset(self):
S
add doc  
sneaxiy 已提交
1616 1617 1618
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1619 1620 1621 1622
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1623 1624 1625 1626
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1627 1628 1629 1630 1631 1632
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1633
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1634 1635 1636 1637
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1638
                executor = fluid.Executor(fluid.CPUPlace())
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1649
        '''
Z
Zeng Jinle 已提交
1650
        self._loader.reset()
S
sneaxiy 已提交
1651

S
sneaxiy 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1661
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1662 1663 1664 1665

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1666
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1667 1668 1669

        Args:
            sample_generator (generator): Python generator that yields
1670
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1671 1672 1673 1674 1675
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1676 1677 1678 1679

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1680 1681 1682
                import paddle.fluid as fluid
                import numpy as np

1683 1684 1685
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1686 1687 1688 1689 1690
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1702 1703
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1704 1705 1706 1707 1708
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1709 1710 1711 1712
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1713 1714 1715

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1716
                        executor.run(feed=data, fetch_list=[loss])
1717
    
S
sneaxiy 已提交
1718
        '''
Z
Zeng Jinle 已提交
1719 1720
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1721

S
sneaxiy 已提交
1722
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1723 1724 1725 1726
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1727
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1728 1729 1730 1731
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1732 1733 1734 1735
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1736 1737 1738 1739
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1740 1741 1742 1743
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1744 1745 1746 1747
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1748 1749 1750 1751 1752
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1763 1764
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1765 1766 1767 1768 1769
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1770 1771 1772 1773 1774
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1775 1776 1777

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1778
                        executor.run(feed=data, fetch_list=[loss])
1779
                 
S
add doc  
sneaxiy 已提交
1780
        '''
Z
Zeng Jinle 已提交
1781
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1782

S
sneaxiy 已提交
1783
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1784 1785 1786 1787
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1788
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1789 1790 1791 1792 1793 1794

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1795
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1796
                be provided when PyReader is iterable.
1797 1798 1799 1800

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1801 1802 1803
                import paddle.fluid as fluid
                import numpy as np

1804 1805 1806
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1807 1808 1809 1810 1811
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1812 1813 1814 1815 1816 1817 1818 1819

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1820 1821
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1822 1823 1824
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1825 1826
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1827 1828 1829
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1830 1831 1832 1833 1834
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1835 1836 1837

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1838
                        executor.run(feed=data, fetch_list=[loss])
1839

S
add doc  
sneaxiy 已提交
1840
        '''
Z
Zeng Jinle 已提交
1841 1842 1843 1844 1845
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1846
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1847 1848 1849
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"
1850 1851 1852 1853
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

1864
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
1865

1866
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1867 1868 1869
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
1870
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()