reader.py 73.6 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
from .framework import _get_paddle_place, _get_paddle_place_list
31
import logging
32
import warnings
S
sneaxiy 已提交
33

34
### Dygraph DataLoader configs ###
35
import os
36 37
import multiprocessing
import signal
38

39
# NOTE: queue has a different name in python2 and python3
40
if six.PY2:
41 42 43
    import Queue as queue
else:
    import queue
44

45 46 47
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

48
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
49 50

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
51

52
KEEP_DATA_LOADER_ORDER = True
53
USE_PINNED_MEMORY = None
54 55 56 57 58 59 60 61 62 63


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
64

65 66 67 68 69 70 71 72 73
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
113 114 115
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
116

Z
Zeng Jinle 已提交
117 118
    def __call__(self):
        return self
S
sneaxiy 已提交
119

Z
Zeng Jinle 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

135 136 137 138 139 140 141 142 143 144 145 146
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
147 148

class DataLoader(object):
149 150 151 152 153 154 155 156
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
157
    DataLoader supports map-style dataset and iterable-style dataset.
158

K
Kaipeng Deng 已提交
159 160 161 162 163 164 165
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


182 183
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
184 185
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
186 187
        feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
            The Tensors should be created by :code:`paddle.static.data()`.
188 189
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
190
        places(list(Place)|tuple(Place)|list(str)|optional): a list of Place,
191 192
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
193 194 195
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
196 197
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
198
            value on each device would be a dict of str -> Tensor, where
199
            the key of the dict is the name of each fed Tensors. If 
200
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
201
            be a list(Tensor). :attr:`return_list` can only be True
202
            in dynamic graph mode. Default True.
203 204 205
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
206
        batch_size(int|None): sample number in a mini-batch, a substitution
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
240
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
241 242 243 244 245 246

    Examples:
        
        .. code-block:: python

            import numpy as np
247 248

            import paddle
K
Kaipeng Deng 已提交
249 250
            import paddle.nn as nn
            import paddle.nn.functional as F
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

273 274
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
275
            class SimpleNet(nn.Layer):
276 277
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
278
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
279 280 281 282

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
283 284 285
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
286 287

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
288
                                batch_size=BATCH_SIZE,
289 290 291 292 293
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
294 295 296 297 298 299 300 301
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
302 303


304 305 306 307
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

308 309 310 311 312 313
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
314
                 return_list=True,
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

339 340
        if places is None:
            places = _current_expected_place()
341 342 343 344
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
345 346 347 348 349
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
350 351 352
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
353 354 355 356 357 358 359 360 361 362
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

363 364 365 366 367 368 369 370 371 372 373 374
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

375 376 377 378 379
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
380 381 382 383
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
384
        else:
385 386
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
387
                "batch_sampler is not given"
388
            self.batch_size = batch_size
389 390 391 392 393 394 395 396 397
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
398

399 400
        self.auto_collate_batch = self.batch_sampler is not None

401 402 403 404 405
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

406
    def __len__(self):
407 408 409
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
410
            if self.auto_collate_batch:
411
                return len(self.batch_sampler)
412 413
            else:
                return len(self.dataset)
414 415 416 417 418 419 420 421 422 423

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
424 425 426 427 428
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
429
                       return_list=False,
430 431
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
432
        """
K
Kaipeng Deng 已提交
433 434 435 436
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

437 438 439
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
440 441 442 443 444 445 446 447
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
448
        
Z
Zeng Jinle 已提交
449 450 451 452 453
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
454
        process.
Z
Zeng Jinle 已提交
455 456

        Args:  
457 458
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
472
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
473 474
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
475 476 477 478 479 480
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
481 482 483 484 485 486 487
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
488 489 490 491

        Returns:
            loader (DataLoader): the created DataLoader object.

492
        Examples 1:
Z
Zeng Jinle 已提交
493 494
            
            .. code-block:: python
S
sneaxiy 已提交
495

496 497 498
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
499
                import numpy as np
500

501 502 503 504 505
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
506 507 508 509 510 511 512 513 514 515 516
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

517 518
                paddle.enable_static()

Z
Zeng Jinle 已提交
519
                def simple_net(image, label):
520 521 522 523
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
563

Z
Zeng Jinle 已提交
564
                    return __reader__
565

Z
Zeng Jinle 已提交
566 567 568 569 570
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
571

Z
Zeng Jinle 已提交
572 573 574 575 576 577 578
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
579
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
580 581 582 583 584 585 586 587 588 589 590
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
591

592 593
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
594

Z
Zeng Jinle 已提交
595
                # Define DataLoader 
596
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
597

Z
Zeng Jinle 已提交
598 599
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
600

Z
Zeng Jinle 已提交
601 602 603
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
604 605
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
606 607
                # 
                # If DataLoader is not iterable, places can be None.
608
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
609
                set_data_source(loader, places)
S
sneaxiy 已提交
610

611 612
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
613

614
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
615

Z
Zeng Jinle 已提交
616 617 618 619 620 621
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


622 623 624 625
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
626
                '''
627
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
628
                '''
629
                import numpy as np
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
694 695 696

            .. code-block:: python

697 698 699 700 701
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
702 703 704 705 706 707
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

708 709
                paddle.enable_static()

710 711 712 713 714 715
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

716
                x = static.data(name='x', shape=[None], dtype='float32')  
717 718 719
                y = x * x

                def run_inference(drop_last): 
720
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
721
                            capacity=8, drop_last=drop_last)
722
                    loader.set_batch_generator(batch_generator, static.cpu_places())
723

724 725
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
741
        """
742 743 744 745 746 747
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
748
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
749 750 751 752

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
753 754 755 756
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
757 758
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
759

Z
Zeng Jinle 已提交
760 761
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
762 763 764
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
765 766 767
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
768

Z
Zeng Jinle 已提交
769 770 771
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
772

Z
Zeng Jinle 已提交
773 774 775
        Examples:

            .. code-block:: python
776

777 778 779 780
                import paddle
                import paddle.static as static

                paddle.enable_static()
781

782 783
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
784

785 786 787 788 789
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
790
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
791

792
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
793 794
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
795

S
sneaxiy 已提交
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
822 823
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
824 825 826
            )
        self._iterable = True
        if not return_list:
827 828
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
829 830 831 832 833 834 835
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
836 837
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
854 855
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
856 857 858 859 860 861 862 863 864

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

865 866 867 868 869 870 871 872 873 874
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

875 876 877 878 879 880 881 882 883 884 885
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
886
            core._erase_process_pids(id(self))
887

888 889 890 891 892 893 894 895 896
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
897
            core.Variable(), self._capacity, False)
898
        self._reader = None
899 900
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
901 902
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
903 904 905

    def _start(self):
        if self._use_multiprocess:
906 907 908
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
909
            self._data_queue = multiprocessing.Queue(self._capacity)
910 911 912
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
913
            self._process = multiprocessing.Process(
914 915
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
916 917 918 919 920 921 922 923 924
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
925 926
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
927 928 929 930

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
931
                target=self._reader_thread_loop_for_multiprocess)
932 933 934
            self._thread.daemon = True
            self._thread.start()
        else:
935 936
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

962 963 964 965 966 967 968 969 970
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

971
    def _reader_thread_loop_for_multiprocess(self):
972 973 974 975 976 977 978
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
979 980 981 982 983 984 985
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
986 987 988 989
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
990
                self._exit_thread_unexpectedly()
991 992
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
993
                )
994
                six.reraise(*sys.exc_info())
995 996

            if not self._thread_done_event.is_set():
997
                if tensor_list is not None:
998 999
                    try:
                        array = core.LoDTensorArray()
1000 1001
                        for tensor in tensor_list:
                            array.append(tensor)
1002 1003 1004
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1005
                        self._exit_thread_unexpectedly()
1006 1007
                        six.reraise(*sys.exc_info())
                else:
1008
                    self._exit_thread_expectedly()
1009

1010
    def _reader_thread_loop_for_singleprocess(self):
1011 1012 1013 1014 1015
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1016
                        item = self._check_input_array(item)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1041 1042 1043 1044
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1045 1046 1047 1048 1049 1050 1051
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
1052 1053 1054 1055 1056
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1072 1073 1074 1075
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1076
        self._batch_reader = reader
1077 1078
        if places is None:
            places = _current_expected_place()
1079 1080
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1081
            "Number of places must be 1 in imperative mode"
1082 1083 1084
        return self


Z
Zeng Jinle 已提交
1085
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
1086
    def __init__(self,
1087 1088
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1089
                 use_double_buffer=True,
1090
                 iterable=True,
1091 1092
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1093
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1094
        self._places = None
S
sneaxiy 已提交
1095
        self._thread = None
1096
        self._queue = None
1097
        self._feed_list = feed_list
1098 1099 1100
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1101 1102
        if not capacity:
            raise ValueError("Please give value to capacity.")
1103 1104 1105 1106
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1107 1108 1109 1110
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1111

Z
Zeng Jinle 已提交
1112
    def _wait_thread_ends(self):
1113
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1114 1115 1116 1117 1118 1119 1120 1121
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1122 1123 1124 1125 1126 1127
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1128 1129
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1130
        self._reader = None
S
sneaxiy 已提交
1131
        self._reader = core.create_py_reader(
1132
            self.queue, self._var_names, self._shapes, self._dtypes,
1133
            self._need_check_feed, self._places, self._use_double_buffer,
1134
            self._drop_last, False)
S
sneaxiy 已提交
1135 1136 1137 1138 1139 1140 1141

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1142
        need_check_feed = []
S
sneaxiy 已提交
1143 1144 1145 1146 1147 1148 1149

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1150
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1151

Z
Zeng Jinle 已提交
1152 1153 1154 1155
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1156

S
sneaxiy 已提交
1157
        var = global_scope().var(queue_name)
1158 1159 1160 1161 1162 1163 1164
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1165

1166
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1167

1168
        dtype_int = [int(t) for t in dtypes]
1169
        block.append_op(
S
sneaxiy 已提交
1170 1171
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1172
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1173 1174 1175
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1176 1177
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1178 1179 1180
                'ranks': ranks
            })

1181 1182 1183
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1195

1196
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1211 1212
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1213 1214 1215 1216 1217 1218 1219 1220

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1221

Z
Zeng Jinle 已提交
1222 1223
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1224
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1225
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1226

Z
Zeng Jinle 已提交
1227
        self._init_iterable()
S
sneaxiy 已提交
1228
        self._start()
Z
Zeng Jinle 已提交
1229 1230 1231 1232
        return self

    def __next__(self):
        try:
1233 1234
            if self._return_list:
                return self._reader.read_next_list()
1235
            else:
1236
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1237 1238 1239 1240 1241 1242
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1243 1244
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1245 1246

    def reset(self):
1247 1248
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1249 1250 1251 1252

    def _start(self):
        def __thread_main__():
            try:
1253 1254 1255 1256
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1257 1258 1259 1260
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1261
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1274
                self._queue.kill()
Z
Zeng Jinle 已提交
1275 1276 1277 1278 1279 1280 1281
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1282

S
sneaxiy 已提交
1283
    def _reset(self):
1284
        self._queue.close()
1285
        self._exited = True
Z
Zeng Jinle 已提交
1286 1287 1288 1289
        thread = self._thread
        if thread is not None:
            thread.join()

1290
        self._exited = False
1291 1292
        self._reader.reset()

Z
Zeng Jinle 已提交
1293 1294 1295 1296 1297 1298
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1299 1300 1301 1302
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1303 1304 1305 1306 1307 1308 1309
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1310 1311 1312 1313 1314
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1315 1316 1317 1318 1319 1320 1321
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1322 1323 1324
        return self

    def set_sample_list_generator(self, reader, places=None):
1325 1326 1327 1328
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1329 1330 1331 1332
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1333

1334 1335 1336
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1337 1338 1339 1340 1341

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1342 1343 1344 1345
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1358
    r"""
Z
Zeng Jinle 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1380
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1381 1382 1383 1384 1385
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1386 1387 1388 1389
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1409 1410 1411 1412 1413
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1425 1426
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1427 1428 1429 1430 1431 1432 1433 1434

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1435 1436
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1464 1465 1466 1467 1468
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1469 1470 1471
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1472 1473 1474
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1475 1476
               return reader

G
guofei 已提交
1477 1478 1479
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1480 1481 1482 1483

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1484 1485 1486 1487 1488 1489
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1490 1491
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1492
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1547 1548

    def start(self):
S
add doc  
sneaxiy 已提交
1549 1550 1551
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1552
        
G
guofei 已提交
1553 1554
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1555
    
H
Huihuang Zheng 已提交
1556 1557 1558 1559
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1560 1561 1562 1563 1564 1565
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1566
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1567 1568 1569 1570
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1571
                executor = fluid.Executor(fluid.CPUPlace())
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1582 1583
	    '''
        self._loader.start()
S
sneaxiy 已提交
1584

S
sneaxiy 已提交
1585
    def reset(self):
S
add doc  
sneaxiy 已提交
1586 1587 1588
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1589 1590 1591 1592
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1593 1594 1595 1596
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1597 1598 1599 1600 1601 1602
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1603
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1604 1605 1606 1607
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1608
                executor = fluid.Executor(fluid.CPUPlace())
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1619
        '''
Z
Zeng Jinle 已提交
1620
        self._loader.reset()
S
sneaxiy 已提交
1621

S
sneaxiy 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1631
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1632 1633 1634 1635

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1636
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1637 1638 1639

        Args:
            sample_generator (generator): Python generator that yields
1640
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1641 1642 1643 1644 1645
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1646 1647 1648 1649

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1650 1651 1652
                import paddle.fluid as fluid
                import numpy as np

1653 1654 1655
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1656 1657 1658 1659 1660
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1672 1673
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1674 1675 1676 1677 1678
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1679 1680 1681 1682
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1683 1684 1685

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1686
                        executor.run(feed=data, fetch_list=[loss])
1687
    
S
sneaxiy 已提交
1688
        '''
Z
Zeng Jinle 已提交
1689 1690
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1691

S
sneaxiy 已提交
1692
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1693 1694 1695 1696
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1697
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1698 1699 1700 1701
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1702 1703 1704 1705
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1706 1707 1708 1709
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1710 1711 1712 1713
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1714 1715 1716 1717
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1718 1719 1720 1721 1722
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1733 1734
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1735 1736 1737 1738 1739
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1740 1741 1742 1743 1744
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1745 1746 1747

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1748
                        executor.run(feed=data, fetch_list=[loss])
1749
                 
S
add doc  
sneaxiy 已提交
1750
        '''
Z
Zeng Jinle 已提交
1751
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1752

S
sneaxiy 已提交
1753
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1754 1755 1756 1757
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1758
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1759 1760 1761 1762 1763 1764

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1765
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1766
                be provided when PyReader is iterable.
1767 1768 1769 1770

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1771 1772 1773
                import paddle.fluid as fluid
                import numpy as np

1774 1775 1776
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1777 1778 1779 1780 1781
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1782 1783 1784 1785 1786 1787 1788 1789

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1790 1791
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1792 1793 1794
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1795 1796
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1797 1798 1799
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1800 1801 1802 1803 1804
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1805 1806 1807

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1808
                        executor.run(feed=data, fetch_list=[loss])
1809

S
add doc  
sneaxiy 已提交
1810
        '''
Z
Zeng Jinle 已提交
1811 1812 1813 1814 1815
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1816
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1817 1818 1819
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"
1820 1821 1822 1823
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

1834
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
1835

1836
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1837 1838 1839
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
1840
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()