reader.py 80.5 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
import time
N
niuliling123 已提交
22
import copy
23

J
Jiabin Yang 已提交
24
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, _non_static_mode, cpu_places, _current_expected_place, _in_eager_without_dygraph_check
S
sneaxiy 已提交
25
from .executor import global_scope
26
from .data_feeder import DataFeeder, BatchedTensorProvider
27
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
28
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
29 30
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
31
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
32
from .unique_name import UniqueNameGenerator
33
from .framework import _get_paddle_place, _get_paddle_place_list
34
from paddle.fluid.framework import _set_expected_place, _current_expected_place
35
import logging
36
import warnings
S
sneaxiy 已提交
37

38
### Dygraph DataLoader configs ###
39
import os
40 41 42
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
43
import queue
44 45 46
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

47
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
48 49

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51
KEEP_DATA_LOADER_ORDER = True
52
USE_PINNED_MEMORY = None
53 54 55 56 57 58 59 60 61 62
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
63 64 65 66 67 68 69 70 71 72


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
73

74 75 76 77 78 79 80 81 82
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
122 123 124
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
125

Z
Zeng Jinle 已提交
126 127
    def __call__(self):
        return self
S
sneaxiy 已提交
128

Z
Zeng Jinle 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

144 145 146 147 148 149 150 151 152 153 154 155
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
class AuToTune(object):
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
        logging.debug("User config for DataLoader: " + str(
            self.loader.num_workers))
        best_num_workers = 0
        min_cost = float("inf")
        logging.debug("Tuning Range for num_workers: 0 ~ " + str(
            self.max_num_worker))
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
                update_num = self.is_best(auto_tune_loader, best_num_workers,
                                          min_cost, self.max_num_worker)
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
            logging.debug("num_workers: " + str(num_workers) + " avg_cost: " +
                          str(avg_cost))
            num_workers += 2
        logging.info("auto_tune dataLoader best_num_workers: " + str(
            best_num_workers))
        logging.debug("AutoTuning Cost for DataLoader: " + str(time.time(
        ) - auto_tune_start) + ' seconds')

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
        if (sys.platform == 'darwin' or sys.platform == 'win32'):
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
N
niuliling123 已提交
218
        loader = copy.copy(self.loader)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        batch_size = self.loader.batch_sampler.batch_size
        if isinstance(self.loader.batch_sampler,
                      paddle.io.DistributedBatchSampler):
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
                drop_last=self.loader.batch_sampler.drop_last)
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                drop_last=self.loader.batch_sampler.drop_last)
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
            logging.debug("for back num_workers: " + str(num_workers) +
                          " avg_cost: " + str(time))
            step += 1
            if (time < best_time * 0.70 * boundary):
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


Z
Zeng Jinle 已提交
273
class DataLoader(object):
274 275 276 277 278 279 280 281
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
282
    DataLoader supports map-style dataset and iterable-style dataset.
283

K
Kaipeng Deng 已提交
284 285 286 287 288 289 290
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
291

292 293 294 295 296 297
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


313 314
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
315 316
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
317
        feed_list (list(Tensor)|tuple(Tensor), optional): feed Tensor list.
318
            The Tensors should be created by :code:`paddle.static.data()`.
319 320
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
321
        places(list(Place)|tuple(Place)|list(str), optional): a list of Place,
322 323
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
324 325 326
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
327
        return_list (bool, optional): whether the return value on each device is 
328
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
329
            value on each device would be a dict of str -> Tensor, where
330
            the key of the dict is the name of each fed Tensors. If 
331
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
332
            be a list(Tensor). :attr:`return_list` can only be True
333
            in dynamic graph mode. Default True.
334
        batch_sampler(BatchSampler, optional): an instance of `paddle.io.BatchSampler`
335 336
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
337
        batch_size(int|None, optional): sample number in a mini-batch, a substitution
338 339 340 341
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
342
        shuffle(bool, optional): whther to shuffle indices order before genrate
343 344
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
345
        drop_last(bool, optional): whether drop the last incomplete batch dataset size
346 347
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
348
        collate_fn(callable, optional): function to generate mini-batch data by merging
349 350
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
351
        num_workers(int, optional): the number of subprocess to load data, 0 for no
352
            subprocess used and loading data in main process. Default 0
353 354
        use_buffer_reader (bool, optional): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch
355 356 357
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
358 359 360
        prefetch_factor (int, optional): Number of batch data the DataLoader would prefetch
            if use_buffer_reader=True. Default 2.
        use_shared_memory (bool, optional): whether to use shared memory to speed up
361 362 363 364 365
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
366
        timeout(int, optional): the timeout value for getting data form output queue
367
            of subprocesses. Default 0.
368
        worker_init_fn(callable, optional): init function which will be called with
369 370 371 372
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
373
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
374 375 376 377 378 379

    Examples:
        
        .. code-block:: python

            import numpy as np
380 381

            import paddle
K
Kaipeng Deng 已提交
382 383
            import paddle.nn as nn
            import paddle.nn.functional as F
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

406 407
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
408
            class SimpleNet(nn.Layer):
409 410
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
411
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
412 413 414 415

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
416 417 418
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
419 420

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
421
                                batch_size=BATCH_SIZE,
422 423 424 425 426
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
427 428 429 430 431 432 433 434
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
435 436


437 438 439 440
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

441 442 443 444 445 446
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
447
                 return_list=True,
448 449 450 451 452 453 454
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
455
                 prefetch_factor=2,
456 457
                 use_shared_memory=True,
                 timeout=0,
K
Kaipeng Deng 已提交
458 459
                 worker_init_fn=None,
                 persistent_workers=False):
460 461 462
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
463
        self.prefetch_factor = prefetch_factor
464 465 466 467
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
468
        if not return_list and not _non_static_mode():
469 470 471 472
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

473 474
        if places is None:
            places = _current_expected_place()
475 476 477 478
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
479 480 481 482 483
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
484 485 486
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
487 488 489
            num_workers = 0
        self.num_workers = num_workers

490 491
        assert prefetch_factor > 0, "prefetch_factor should be a positive value"

492 493 494 495 496 497 498
        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

499 500 501 502 503 504 505 506 507 508 509 510
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

511 512 513 514 515
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
516 517 518 519
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
520
        else:
521 522
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
523
                "batch_sampler is not given"
524
            self.batch_size = batch_size
525 526 527 528 529 530 531 532 533
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
534

535
        self.drop_last = drop_last
536 537
        self.auto_collate_batch = self.batch_sampler is not None

538
        self.pin_memory = False
J
Jiabin Yang 已提交
539
        if _non_static_mode():
540 541 542
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

K
Kaipeng Deng 已提交
543 544
        self._persistent_workers = persistent_workers
        self._iterator = None
545
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
546

547
    def __len__(self):
548 549 550
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
551
            if self.auto_collate_batch:
552
                return len(self.batch_sampler)
553 554
            else:
                return len(self.dataset)
555 556 557 558

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
559 560 561 562 563 564
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
565 566 567 568 569 570
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
571 572 573 574 575
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
576
                       return_list=False,
577 578
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
579
        """
K
Kaipeng Deng 已提交
580 581 582 583
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

584 585 586
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
587 588 589 590 591 592 593 594
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
595
        
Z
Zeng Jinle 已提交
596 597 598 599 600
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
601
        process.
Z
Zeng Jinle 已提交
602 603

        Args:  
604 605
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
619
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
620 621
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
622 623 624 625 626 627
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
628 629 630 631 632 633 634
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
635 636 637 638

        Returns:
            loader (DataLoader): the created DataLoader object.

639
        Examples 1:
Z
Zeng Jinle 已提交
640 641
            
            .. code-block:: python
S
sneaxiy 已提交
642

643 644 645
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
646
                import numpy as np
647

648 649 650 651 652
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
653 654 655 656 657 658 659 660 661 662 663
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

664 665
                paddle.enable_static()

Z
Zeng Jinle 已提交
666
                def simple_net(image, label):
667 668 669 670
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
710

Z
Zeng Jinle 已提交
711
                    return __reader__
712

Z
Zeng Jinle 已提交
713 714 715 716 717
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
718

Z
Zeng Jinle 已提交
719 720 721 722 723 724 725
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
726
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
727 728 729 730 731 732 733 734 735 736 737
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
738

739 740
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
741

Z
Zeng Jinle 已提交
742
                # Define DataLoader 
743
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
744

Z
Zeng Jinle 已提交
745 746
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
747

Z
Zeng Jinle 已提交
748 749 750
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
751 752
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
753 754
                # 
                # If DataLoader is not iterable, places can be None.
755
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
756
                set_data_source(loader, places)
S
sneaxiy 已提交
757

758 759
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
760

761
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
762

Z
Zeng Jinle 已提交
763 764 765 766 767 768
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


769 770 771 772
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
773
                '''
774
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
775
                '''
776
                import numpy as np
777

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
841 842 843

            .. code-block:: python

844 845 846 847 848
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
849 850 851 852 853 854
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

855 856
                paddle.enable_static()

857 858 859 860 861 862
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

863
                x = static.data(name='x', shape=[None], dtype='float32')  
864 865 866
                y = x * x

                def run_inference(drop_last): 
867
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
868
                            capacity=8, drop_last=drop_last)
869
                    loader.set_batch_generator(batch_generator, static.cpu_places())
870

871 872
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
888
        """
J
Jiabin Yang 已提交
889
        if _non_static_mode():
890 891 892 893 894
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
895
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
896 897 898 899

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
900 901 902 903
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
904 905
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
906

Z
Zeng Jinle 已提交
907 908
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
909 910 911
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
912 913 914
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
915

Z
Zeng Jinle 已提交
916 917 918
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
919

Z
Zeng Jinle 已提交
920 921 922
        Examples:

            .. code-block:: python
923

924 925 926 927
                import paddle
                import paddle.static as static

                paddle.enable_static()
928

929 930
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
931

932 933 934 935 936
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
937
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
938

939
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
940 941
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
942

S
sneaxiy 已提交
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
969 970
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
971 972 973
            )
        self._iterable = True
        if not return_list:
974 975
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
976 977 978 979 980 981 982
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
983 984
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
1001 1002
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
1003 1004 1005 1006 1007 1008 1009 1010 1011

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1033
            core._erase_process_pids(id(self))
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1044
            core.Variable(), self._capacity, False)
1045
        self._reader = None
1046 1047
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
1048 1049
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
1050 1051 1052

    def _start(self):
        if self._use_multiprocess:
1053 1054 1055
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1056
            self._data_queue = multiprocessing.Queue(self._capacity)
1057 1058 1059
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1060
            self._process = multiprocessing.Process(
1061 1062
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
1063 1064 1065 1066 1067 1068 1069 1070 1071
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1072 1073
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1074 1075 1076 1077

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1078 1079
                target=self._reader_thread_loop_for_multiprocess,
                args=(_current_expected_place(), ))
1080 1081 1082
            self._thread.daemon = True
            self._thread.start()
        else:
1083
            self._thread = threading.Thread(
1084 1085
                target=self._reader_thread_loop_for_singleprocess,
                args=(_current_expected_place(), ))
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1106
            if _in_eager_without_dygraph_check():
1107
                return core.eager.read_next_tensor_list(
1108 1109 1110
                    self._reader.read_next_list()[0])
            else:
                return self._reader.read_next_var_list()
1111 1112 1113 1114
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

1115 1116 1117 1118 1119 1120 1121 1122 1123
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1124 1125 1126 1127
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
        _set_expected_place(legacy_expected_place)

1128 1129 1130 1131 1132 1133 1134
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
1135 1136 1137 1138 1139 1140 1141
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1142 1143 1144 1145
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1146
                self._exit_thread_unexpectedly()
1147 1148
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1149
                )
1150
                six.reraise(*sys.exc_info())
1151 1152

            if not self._thread_done_event.is_set():
1153
                if tensor_list is not None:
1154 1155
                    try:
                        array = core.LoDTensorArray()
1156 1157
                        for tensor in tensor_list:
                            array.append(tensor)
1158 1159 1160
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1161
                        self._exit_thread_unexpectedly()
1162 1163
                        six.reraise(*sys.exc_info())
                else:
1164
                    self._exit_thread_expectedly()
1165

1166
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1167
        try:
1168 1169 1170
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
            _set_expected_place(legacy_expected_place)

1171 1172 1173 1174
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1175
                        item = self._check_input_array(item)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1200 1201 1202 1203
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1204 1205 1206 1207 1208 1209 1210
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
1211 1212 1213 1214 1215
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1231 1232 1233 1234
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1235
        self._batch_reader = reader
1236 1237
        if places is None:
            places = _current_expected_place()
1238 1239
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1240
            "Number of places must be 1 in imperative mode"
1241 1242 1243
        return self


Z
Zeng Jinle 已提交
1244
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
1245
    def __init__(self,
1246 1247
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1248
                 use_double_buffer=True,
1249
                 iterable=True,
1250 1251
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1252
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1253
        self._places = None
S
sneaxiy 已提交
1254
        self._thread = None
1255
        self._queue = None
1256
        self._feed_list = feed_list
1257 1258 1259
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1260 1261
        if not capacity:
            raise ValueError("Please give value to capacity.")
1262 1263 1264 1265
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1266 1267 1268 1269
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1270

Z
Zeng Jinle 已提交
1271
    def _wait_thread_ends(self):
1272
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1273 1274 1275 1276 1277 1278 1279 1280
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1281 1282 1283 1284 1285 1286
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1287 1288
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1289
        self._reader = None
S
sneaxiy 已提交
1290
        self._reader = core.create_py_reader(
1291
            self.queue, self._var_names, self._shapes, self._dtypes,
1292
            self._need_check_feed, self._places, self._use_double_buffer,
1293
            self._drop_last, False)
S
sneaxiy 已提交
1294 1295 1296 1297 1298 1299 1300

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1301
        need_check_feed = []
S
sneaxiy 已提交
1302 1303 1304 1305 1306 1307 1308

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1309
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1310

Z
Zeng Jinle 已提交
1311 1312 1313 1314
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1315

S
sneaxiy 已提交
1316
        var = global_scope().var(queue_name)
1317 1318 1319 1320 1321 1322 1323
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1324

1325
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1326

1327
        dtype_int = [int(t) for t in dtypes]
1328
        block.append_op(
S
sneaxiy 已提交
1329 1330
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1331
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1332 1333 1334
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1335 1336
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1337 1338 1339
                'ranks': ranks
            })

1340 1341 1342
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1354

1355
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1370 1371
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1372 1373 1374 1375 1376 1377 1378 1379

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1380

Z
Zeng Jinle 已提交
1381 1382
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1383
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1384
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1385

Z
Zeng Jinle 已提交
1386
        self._init_iterable()
S
sneaxiy 已提交
1387
        self._start()
Z
Zeng Jinle 已提交
1388 1389 1390 1391
        return self

    def __next__(self):
        try:
1392
            if self._return_list:
1393 1394 1395 1396
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1397
            else:
1398
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1399 1400 1401 1402 1403 1404
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1405 1406
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1407 1408

    def reset(self):
1409 1410
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1411 1412

    def _start(self):
1413
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1414
            try:
1415 1416 1417
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

1418 1419 1420 1421
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1422 1423 1424 1425
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1426
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1439
                self._queue.kill()
Z
Zeng Jinle 已提交
1440
                self._thread = None
1441
                logging.warning('Your reader has raised an exception!')
Z
Zeng Jinle 已提交
1442 1443
                six.reraise(*sys.exc_info())

1444 1445
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(), ))
Z
Zeng Jinle 已提交
1446 1447
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1448

S
sneaxiy 已提交
1449
    def _reset(self):
1450
        self._queue.close()
1451
        self._exited = True
Z
Zeng Jinle 已提交
1452 1453 1454 1455
        thread = self._thread
        if thread is not None:
            thread.join()

1456
        self._exited = False
1457 1458
        self._reader.reset()

Z
Zeng Jinle 已提交
1459 1460 1461 1462 1463 1464
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1465 1466 1467 1468
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1469 1470 1471 1472 1473 1474 1475
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1476 1477 1478 1479 1480
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1481 1482 1483 1484 1485 1486 1487
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1488 1489 1490
        return self

    def set_sample_list_generator(self, reader, places=None):
1491 1492 1493 1494
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1495 1496 1497 1498
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1499

1500 1501 1502
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1503 1504 1505 1506 1507

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1508 1509 1510 1511
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1524
    r"""
Z
Zeng Jinle 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1546
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1547 1548 1549 1550 1551
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1552 1553 1554 1555
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1575 1576 1577 1578 1579
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1591 1592
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1593 1594 1595 1596 1597 1598 1599 1600

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1601 1602
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1630 1631 1632 1633 1634
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1635 1636 1637
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1638 1639 1640
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1641 1642
               return reader

G
guofei 已提交
1643 1644 1645
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1646 1647 1648 1649

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1650 1651 1652 1653 1654 1655
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1656 1657
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1658
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1713 1714

    def start(self):
S
add doc  
sneaxiy 已提交
1715 1716 1717
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1718
        
G
guofei 已提交
1719 1720
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1721
    
H
Huihuang Zheng 已提交
1722 1723 1724 1725
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1726 1727 1728 1729 1730 1731
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1732
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1733 1734 1735 1736
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1737
                executor = fluid.Executor(fluid.CPUPlace())
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1748 1749
	    '''
        self._loader.start()
S
sneaxiy 已提交
1750

S
sneaxiy 已提交
1751
    def reset(self):
S
add doc  
sneaxiy 已提交
1752 1753 1754
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1755 1756 1757 1758
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1759 1760 1761 1762
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1763 1764 1765 1766 1767 1768
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1769
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1770 1771 1772 1773
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1774
                executor = fluid.Executor(fluid.CPUPlace())
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1785
        '''
Z
Zeng Jinle 已提交
1786
        self._loader.reset()
S
sneaxiy 已提交
1787

S
sneaxiy 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1797
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1798 1799 1800 1801

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1802
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1803 1804 1805

        Args:
            sample_generator (generator): Python generator that yields
1806
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1807 1808 1809 1810 1811
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1812 1813 1814 1815

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1816 1817 1818
                import paddle.fluid as fluid
                import numpy as np

1819 1820 1821
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1822 1823 1824 1825 1826
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1838 1839
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1840 1841 1842 1843 1844
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1845 1846 1847 1848
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1849 1850 1851

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1852
                        executor.run(feed=data, fetch_list=[loss])
1853
    
S
sneaxiy 已提交
1854
        '''
Z
Zeng Jinle 已提交
1855 1856
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1857

S
sneaxiy 已提交
1858
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1859 1860 1861 1862
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1863
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1864 1865 1866 1867
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1868 1869 1870 1871
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1872 1873 1874 1875
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1876 1877 1878 1879
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1880 1881 1882 1883
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1884 1885 1886 1887 1888
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1899 1900
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1901 1902 1903 1904 1905
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1906 1907 1908 1909 1910
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1911 1912 1913

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1914
                        executor.run(feed=data, fetch_list=[loss])
1915
                 
S
add doc  
sneaxiy 已提交
1916
        '''
Z
Zeng Jinle 已提交
1917
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1918

S
sneaxiy 已提交
1919
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1920 1921 1922 1923
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1924
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1925 1926 1927 1928 1929 1930

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1931
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1932
                be provided when PyReader is iterable.
1933 1934 1935 1936

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1937 1938 1939
                import paddle.fluid as fluid
                import numpy as np

1940 1941 1942
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1943 1944 1945 1946 1947
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1948 1949 1950 1951 1952 1953 1954 1955

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1956 1957
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1958 1959 1960
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1961 1962
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1963 1964 1965
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1966 1967 1968 1969 1970
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1971 1972 1973

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1974
                        executor.run(feed=data, fetch_list=[loss])
1975

S
add doc  
sneaxiy 已提交
1976
        '''
Z
Zeng Jinle 已提交
1977 1978 1979 1980 1981
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1982
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1983
                          DatasetBase), "dataset must be type of DatasetBase"
J
Jiabin Yang 已提交
1984
        assert not _non_static_mode(
Z
Zeng Jinle 已提交
1985
        ), "DatasetLoader is not supported in dygraph mode yet"
1986 1987 1988 1989
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

2000
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
2001

2002
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
2003 2004 2005
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
2006
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()