reader.py 70.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
import logging
31
import warnings
S
sneaxiy 已提交
32

33
### Dygraph DataLoader configs ###
34
import os
35 36
import multiprocessing
import signal
37

38
# NOTE: queue has a different name in python2 and python3
39
if six.PY2:
40 41 42
    import Queue as queue
else:
    import queue
43

44 45 46
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

47
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
48 49

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51
KEEP_DATA_LOADER_ORDER = True
52
USE_PINNED_MEMORY = None
53 54 55 56 57 58 59 60 61 62


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
63

64 65 66 67 68 69 70 71 72
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
112 113 114
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
115

Z
Zeng Jinle 已提交
116 117
    def __call__(self):
        return self
S
sneaxiy 已提交
118

Z
Zeng Jinle 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

134 135 136 137 138 139 140 141 142 143 144 145
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
146 147

class DataLoader(object):
148 149 150 151 152 153 154 155
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
156
    DataLoader supports map-style dataset and iterable-style dataset.
157

K
Kaipeng Deng 已提交
158 159 160 161 162 163 164
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


181 182
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
183 184 185
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
        feed_list (list(Tensor)|tuple(Tensor)): feed variable list.
K
Kaipeng Deng 已提交
186
            The variables should be created by :code:`paddle.static.data()`.
187 188
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
189 190 191 192
        places(list(Place)|tuple(Place)|optional): a list of Place,
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
            will be used. Default None.
193 194
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
195
            value on each device would be a dict of str -> Tensor, where
196 197
            the key of the dict is the name of each fed variables. If 
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
198
            be a list(Tensor). :attr:`return_list` can only be True
199
            in dynamic graph mode. Default True.
200 201 202
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
203
        batch_size(int|None): sample number in a mini-batch, a substitution
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
237
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
238 239 240 241 242 243

    Examples:
        
        .. code-block:: python

            import numpy as np
244 245

            import paddle
K
Kaipeng Deng 已提交
246 247
            import paddle.nn as nn
            import paddle.nn.functional as F
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

270 271
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
272
            class SimpleNet(nn.Layer):
273 274
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
275
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
276 277 278 279

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
280 281 282
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
283 284

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
285
                                batch_size=BATCH_SIZE,
286 287 288 289 290
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
291 292 293 294 295 296 297 298
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
299 300


301 302 303 304
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

305 306 307 308 309 310
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
311
                 return_list=True,
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

336 337
        if places is None:
            places = _current_expected_place()
338 339 340 341 342
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
343 344 345
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
346 347 348 349 350 351 352 353 354 355
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

356 357 358 359 360 361 362 363 364 365 366 367
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

368 369 370 371 372 373 374 375
        if batch_sampler is not None:
            assert isinstance(batch_sampler, BatchSampler), \
                "batch_sampler should be None or subclass instance " \
                "of paddle.io.BatchSampler"
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
376 377 378 379
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
380
        else:
381 382
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
383
                "batch_sampler is not given"
384
            self.batch_size = batch_size
385 386 387 388 389 390 391 392 393
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
394

395 396
        self.auto_collate_batch = self.batch_sampler is not None

397 398 399 400 401
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

402
    def __len__(self):
403 404 405
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
406
            if self.auto_collate_batch:
407
                return len(self.batch_sampler)
408 409
            else:
                return len(self.dataset)
410 411 412 413 414 415 416 417 418 419

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
420 421 422 423 424
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
425
                       return_list=False,
426 427
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
428
        """
K
Kaipeng Deng 已提交
429 430 431 432
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

433 434 435
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
436 437 438 439 440 441 442 443
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
444
        
Z
Zeng Jinle 已提交
445 446 447 448 449 450 451 452 453 454 455 456
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
457
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
471
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
472 473
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
474 475 476 477 478 479
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
480 481 482 483 484 485 486
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
487 488 489 490

        Returns:
            loader (DataLoader): the created DataLoader object.

491
        Examples 1:
Z
Zeng Jinle 已提交
492 493
            
            .. code-block:: python
S
sneaxiy 已提交
494

Z
Zeng Jinle 已提交
495 496
                import paddle.fluid as fluid
                import numpy as np
497

Z
Zeng Jinle 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
553

Z
Zeng Jinle 已提交
554
                    return __reader__
555

Z
Zeng Jinle 已提交
556 557 558 559 560
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
561

Z
Zeng Jinle 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
581

582 583
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
584

Z
Zeng Jinle 已提交
585 586
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
587

Z
Zeng Jinle 已提交
588 589
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
590

Z
Zeng Jinle 已提交
591 592 593 594 595 596 597 598 599
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
600

Z
Zeng Jinle 已提交
601 602
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
603

Z
Zeng Jinle 已提交
604
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
605

Z
Zeng Jinle 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

        Examples 2:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

                x = fluid.data(name='x', shape=[None], dtype='float32')  
                y = x * x

                def run_inference(drop_last): 
                    loader = fluid.io.DataLoader.from_generator(feed_list=[x],
                            capacity=8, drop_last=drop_last)
                    loader.set_batch_generator(batch_generator, fluid.cpu_places())

                    exe = fluid.Executor(fluid.CPUPlace())
                    prog = fluid.CompiledProgram(fluid.default_main_program())
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
666
        """
667 668 669 670 671 672
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
673
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
674 675 676 677

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
678 679 680 681
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
682 683
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
684

Z
Zeng Jinle 已提交
685 686 687 688 689 690 691
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
692

Z
Zeng Jinle 已提交
693 694 695
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
696

Z
Zeng Jinle 已提交
697 698 699
        Examples:

            .. code-block:: python
700

Z
Zeng Jinle 已提交
701
                import paddle.fluid as fluid
702

703 704
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
705

Z
Zeng Jinle 已提交
706 707 708 709 710
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
711

Z
Zeng Jinle 已提交
712 713 714
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
715

S
sneaxiy 已提交
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
742 743
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
744 745 746
            )
        self._iterable = True
        if not return_list:
747 748
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
749 750 751 752 753 754 755
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
756 757
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
774 775
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
776 777 778 779 780 781 782 783 784

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

785 786 787 788 789 790 791 792 793 794
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

795 796 797 798 799 800 801 802 803 804 805
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
806
            core._erase_process_pids(id(self))
807

808 809 810 811 812 813 814 815 816
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
817
            core.Variable(), self._capacity, False)
818
        self._reader = None
819 820
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
821 822
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
823 824 825

    def _start(self):
        if self._use_multiprocess:
826 827 828
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
829
            self._data_queue = multiprocessing.Queue(self._capacity)
830 831 832
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
833
            self._process = multiprocessing.Process(
834 835
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
836 837 838 839 840 841 842 843 844
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
845 846
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
847 848 849 850

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
851
                target=self._reader_thread_loop_for_multiprocess)
852 853 854
            self._thread.daemon = True
            self._thread.start()
        else:
855 856
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

882 883 884 885 886 887 888 889 890
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

891
    def _reader_thread_loop_for_multiprocess(self):
892 893 894 895 896 897 898
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
899 900 901 902 903 904 905
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
906 907 908 909
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
910
                self._exit_thread_unexpectedly()
911 912
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
913
                )
914
                six.reraise(*sys.exc_info())
915 916

            if not self._thread_done_event.is_set():
917
                if tensor_list is not None:
918 919
                    try:
                        array = core.LoDTensorArray()
920 921
                        for tensor in tensor_list:
                            array.append(tensor)
922 923 924
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
925
                        self._exit_thread_unexpectedly()
926 927
                        six.reraise(*sys.exc_info())
                else:
928
                    self._exit_thread_expectedly()
929

930
    def _reader_thread_loop_for_singleprocess(self):
931 932 933 934 935
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
936
                        item = self._check_input_array(item)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
984 985
        if places is None:
            places = _current_expected_place()
986 987
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
988
            "Number of places must be 1 in imperative mode"
989 990 991
        return self


Z
Zeng Jinle 已提交
992
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
993
    def __init__(self,
994 995
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
996
                 use_double_buffer=True,
997
                 iterable=True,
998 999
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1000
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1001
        self._places = None
S
sneaxiy 已提交
1002
        self._thread = None
1003
        self._queue = None
1004
        self._feed_list = feed_list
1005 1006 1007
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1008 1009
        if not capacity:
            raise ValueError("Please give value to capacity.")
1010 1011 1012 1013
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1014 1015 1016 1017
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1018

Z
Zeng Jinle 已提交
1019
    def _wait_thread_ends(self):
1020
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1021 1022 1023 1024 1025 1026 1027 1028
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1029 1030 1031 1032 1033 1034
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1035 1036
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1037
        self._reader = None
S
sneaxiy 已提交
1038
        self._reader = core.create_py_reader(
1039
            self.queue, self._var_names, self._shapes, self._dtypes,
1040
            self._need_check_feed, self._places, self._use_double_buffer,
1041
            self._drop_last, False)
S
sneaxiy 已提交
1042 1043 1044 1045 1046 1047 1048

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1049
        need_check_feed = []
S
sneaxiy 已提交
1050 1051 1052 1053 1054 1055 1056

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1057
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1058

Z
Zeng Jinle 已提交
1059 1060 1061 1062
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1063

S
sneaxiy 已提交
1064
        var = global_scope().var(queue_name)
1065 1066 1067 1068 1069 1070 1071
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1072

1073
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1074

1075
        dtype_int = [int(t) for t in dtypes]
1076
        block.append_op(
S
sneaxiy 已提交
1077 1078
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1079
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1080 1081 1082
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1083 1084
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1085 1086 1087
                'ranks': ranks
            })

1088 1089 1090
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1102

1103
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1118 1119
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1120 1121 1122 1123 1124 1125 1126 1127

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1128

Z
Zeng Jinle 已提交
1129 1130
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1131
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1132
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1133

Z
Zeng Jinle 已提交
1134
        self._init_iterable()
S
sneaxiy 已提交
1135
        self._start()
Z
Zeng Jinle 已提交
1136 1137 1138 1139
        return self

    def __next__(self):
        try:
1140 1141
            if self._return_list:
                return self._reader.read_next_list()
1142
            else:
1143
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1144 1145 1146 1147 1148 1149
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1150 1151
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1152 1153

    def reset(self):
1154 1155
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1156 1157 1158 1159

    def _start(self):
        def __thread_main__():
            try:
1160 1161 1162 1163
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1164 1165 1166 1167
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1168
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1181
                self._queue.kill()
Z
Zeng Jinle 已提交
1182 1183 1184 1185 1186 1187 1188
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1189

S
sneaxiy 已提交
1190
    def _reset(self):
1191
        self._queue.close()
1192
        self._exited = True
Z
Zeng Jinle 已提交
1193 1194 1195 1196
        thread = self._thread
        if thread is not None:
            thread.join()

1197
        self._exited = False
1198 1199
        self._reader.reset()

Z
Zeng Jinle 已提交
1200 1201 1202 1203 1204 1205
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1206 1207 1208 1209 1210 1211 1212
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1213 1214 1215 1216 1217
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1218 1219 1220 1221 1222 1223 1224
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1225 1226 1227
        return self

    def set_sample_list_generator(self, reader, places=None):
1228 1229 1230 1231
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1232

1233 1234 1235
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1275
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1276 1277 1278 1279 1280
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1281 1282 1283 1284
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1304 1305 1306 1307 1308
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1320 1321
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1322 1323 1324 1325 1326 1327 1328 1329

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1330 1331
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1359 1360 1361 1362 1363
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1364 1365 1366
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1367 1368 1369
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1370 1371
               return reader

G
guofei 已提交
1372 1373 1374
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1375 1376 1377 1378

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1379 1380 1381 1382 1383 1384
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1385 1386
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1387
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1442 1443

    def start(self):
S
add doc  
sneaxiy 已提交
1444 1445 1446
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1447
        
G
guofei 已提交
1448 1449
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1450
    
H
Huihuang Zheng 已提交
1451 1452 1453 1454
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1455 1456 1457 1458 1459 1460
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1461
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1462 1463 1464 1465
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1466
                executor = fluid.Executor(fluid.CPUPlace())
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1477 1478
	    '''
        self._loader.start()
S
sneaxiy 已提交
1479

S
sneaxiy 已提交
1480
    def reset(self):
S
add doc  
sneaxiy 已提交
1481 1482 1483
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1484 1485 1486 1487
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1488 1489 1490 1491
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1492 1493 1494 1495 1496 1497
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1498
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1499 1500 1501 1502
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1503
                executor = fluid.Executor(fluid.CPUPlace())
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1514
        '''
Z
Zeng Jinle 已提交
1515
        self._loader.reset()
S
sneaxiy 已提交
1516

S
sneaxiy 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1526
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1527 1528 1529 1530

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1531
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1532 1533 1534

        Args:
            sample_generator (generator): Python generator that yields
1535
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1536 1537 1538 1539 1540
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1541 1542 1543 1544

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1545 1546 1547
                import paddle.fluid as fluid
                import numpy as np

1548 1549 1550
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1551 1552 1553 1554 1555
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1567 1568
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1569 1570 1571 1572 1573
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1574 1575 1576 1577
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1578 1579 1580

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1581
                        executor.run(feed=data, fetch_list=[loss])
1582
    
S
sneaxiy 已提交
1583
        '''
Z
Zeng Jinle 已提交
1584 1585
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1586

S
sneaxiy 已提交
1587
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1588 1589 1590 1591
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1592
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1593 1594 1595 1596
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1597 1598 1599 1600
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1601 1602 1603 1604
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1605 1606 1607 1608
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1609 1610 1611 1612
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1613 1614 1615 1616 1617
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1628 1629
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1630 1631 1632 1633 1634
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1635 1636 1637 1638 1639
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1640 1641 1642

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1643
                        executor.run(feed=data, fetch_list=[loss])
1644
                 
S
add doc  
sneaxiy 已提交
1645
        '''
Z
Zeng Jinle 已提交
1646
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1647

S
sneaxiy 已提交
1648
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1649 1650 1651 1652
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1653
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1654 1655 1656 1657 1658 1659

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1660
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1661
                be provided when PyReader is iterable.
1662 1663 1664 1665

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1666 1667 1668
                import paddle.fluid as fluid
                import numpy as np

1669 1670 1671
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1672 1673 1674 1675 1676
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1677 1678 1679 1680 1681 1682 1683 1684

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1685 1686
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1687 1688 1689
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1690 1691
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1692 1693 1694
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1695 1696 1697 1698 1699
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1700 1701 1702

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1703
                        executor.run(feed=data, fetch_list=[loss])
1704

S
add doc  
sneaxiy 已提交
1705
        '''
Z
Zeng Jinle 已提交
1706 1707 1708 1709 1710
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1711
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

1725
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
1726

1727
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1728 1729 1730
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
1731
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()