random.py 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
W
wanghuancoder 已提交
23
from paddle import _C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
P
phlrain 已提交
25
from paddle.fluid.framework import _in_eager_mode
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

53
            import paddle
L
Leo Chen 已提交
54

L
Leo Chen 已提交
55 56 57
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

58
            x = paddle.rand([2,3])
L
Leo Chen 已提交
59 60 61
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
62

63
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
64 65 66
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
67 68 69

    """

Z
zhiboniu 已提交
70
    if paddle.in_dynamic_mode():
P
phlrain 已提交
71 72
        if _in_eager_mode():
            return _C_ops.final_state_bernoulli(x)
W
wanghuancoder 已提交
73
        return _C_ops.bernoulli(x)
L
Leo Chen 已提交
74 75 76 77 78 79 80 81

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
82
    out.stop_gradient = True
L
Leo Chen 已提交
83 84 85
    return out


86
def poisson(x, name=None):
87
    r"""
88 89 90 91
    This OP returns a tensor filled with random number from a Poisson Distribution.

    .. math::

92
        out_i \sim Poisson (lambda = x_i)
93 94 95 96 97 98 99 100 101 102 103 104 105 106

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
107
            paddle.set_device('cpu')
108
            paddle.seed(100)
109 110 111

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
112 113
            #[[2., 5., 0.],
            # [5., 1., 3.]]
114 115 116

    """

Z
zhiboniu 已提交
117
    if paddle.in_dynamic_mode():
118 119 120 121 122 123 124 125 126 127 128
        return _C_ops.poisson(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

151 152
            import paddle

C
cnn 已提交
153
            paddle.seed(100) # on CPU device
154
            x = paddle.rand([2,4])
155
            print(x)
156 157 158
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
159
            paddle.seed(200) # on CPU device
160
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
161
            print(out1)
162 163 164 165 166 167 168
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
169
            paddle.seed(300) # on CPU device
170
            out3 = paddle.multinomial(x, num_samples=3)
171
            print(out3)
172 173
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
174 175 176

    """

177 178 179
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

Z
zhiboniu 已提交
180
    if paddle.in_dynamic_mode():
P
phlrain 已提交
181 182
        if _in_eager_mode():
            return _C_ops.final_state_multinomial(x, num_samples, replacement)
W
wanghuancoder 已提交
183 184
        return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
                                  replacement)
P
pangyoki 已提交
185 186 187 188 189 190 191 192 193 194 195 196

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
197
    out.stop_gradient = True
P
pangyoki 已提交
198 199 200
    return out


201
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
202 203 204 205 206
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
207
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
208 209 210 211
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
212 213
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
214
            is 1.0.
215 216
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
217 218 219
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
220
        name (str, optional): The default value is None. Normally there is no
221 222 223 224 225 226 227
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
228 229 230
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

231 232 233 234
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
235 236
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
237 238 239
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zhiboniu 已提交
240
    if paddle.in_dynamic_mode():
241
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
242 243 244
        return _C_ops.gaussian_random('shape', shape, 'mean',
                                      float(mean), 'std',
                                      float(std), 'seed', seed, 'dtype', dtype)
245

246
    check_shape(shape, op_type_for_check)
247 248 249 250 251 252 253 254 255 256
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
257
    utils.get_shape_tensor_inputs(
258 259
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

260
    helper = LayerHelper('gaussian', **locals())
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
278
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
279 280 281 282
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
283
        dtype (str|np.dtype, optional): The data type of the output Tensor.
284 285 286
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
287 288 289 290 291 292 293 294 295 296 297 298 299 300
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
301
            out1 = paddle.standard_normal(shape=[2, 3])
302 303 304 305
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
306 307
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
308
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
309 310 311 312 313 314 315 316
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
317
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
318
            out3 = paddle.standard_normal(shape_tensor)
319 320 321 322
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
323
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
324 325


Z
zhupengyang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
def randn(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

422
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
423 424 425
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

426
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
427 428 429 430
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
431
    if not paddle.in_dynamic_mode():
432 433 434 435 436 437 438 439 440 441 442 443 444
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
445
            check_shape(shape, 'normal')
446 447 448 449 450 451 452 453 454 455 456 457 458 459

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
460
        return gaussian(shape=shape, mean=mean, std=std, name=name)
461 462

    out = out * std + mean
Z
zhiboniu 已提交
463
    if not paddle.in_dynamic_mode():
464 465 466 467
        out.stop_grediant = True
    return out


468
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
469 470 471 472 473
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
474

Z
zhupengyang 已提交
475
    .. code-block:: text
李灿 已提交
476

P
pangyoki 已提交
477 478 479 480 481 482 483 484 485 486 487
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
488 489 490 491
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
492 493 494 495
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
496 497 498
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
519 520 521 522
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
523 524 525

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
526 527 528 529 530
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
531 532 533

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
534
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
535 536 537
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
538
    """
539 540 541 542
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
543 544
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
545

P
pangyoki 已提交
546 547 548
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zhiboniu 已提交
549
    if paddle.in_dynamic_mode():
550
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
551 552 553
        return _C_ops.uniform_random('shape', shape, 'min',
                                     float(min), 'max',
                                     float(max), 'seed', seed, 'dtype', dtype)
P
pangyoki 已提交
554

555 556
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
557 558 559

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
560
    utils.get_shape_tensor_inputs(
561
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
562

563
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
564 565 566 567
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
568
    out.stop_gradient = True
P
pangyoki 已提交
569 570 571
    return out


J
JYChen 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
607 608
    return _C_ops.uniform_random_inplace_(x, 'min', min, 'max', max, 'seed',
                                          seed)
J
JYChen 已提交
609 610


611
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
612
    """
613 614 615
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
616 617

    Args:
618
        low (int): The lower bound on the range of random values to generate.
619 620
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
621
        high (int, optional): The upper bound on the range of random values to
622 623
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
624
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
625 626 627 628
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
629
        dtype (str|np.dtype, optional): The data type of the
630 631
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
632
        name (str, optional): The default value is None.  Normally there is no
633 634
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
635 636

    Returns: 
637 638
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
639 640 641

    Examples:
        .. code-block:: python
642

643
            import paddle
644

645 646
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
647
            out1 = paddle.randint(low=-5, high=5, shape=[3])
648 649 650 651
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
652 653 654
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
655 656 657 658 659
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
660
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
661
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
662 663 664 665
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
666
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
667 668 669 670 671
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
672
            out5 = paddle.randint(10)
673
            # [7]  # random
S
silingtong123 已提交
674

675 676
    """
    if high is None:
677 678 679 680
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
681 682
        high = low
        low = 0
S
silingtong123 已提交
683 684
    if dtype is None:
        dtype = 'int64'
685 686
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
687

Z
zhiboniu 已提交
688
    if paddle.in_dynamic_mode():
689
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
690 691
        return _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                              0, 'dtype', dtype)
S
silingtong123 已提交
692

693
    check_shape(shape, 'randint')
694 695
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
696 697 698 699
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

700 701
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
702
    utils.get_shape_tensor_inputs(
703 704 705 706 707 708
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
709
    out.stop_gradient = True
S
silingtong123 已提交
710
    return out
C
cc 已提交
711 712


713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    shape = x.shape

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
855
    if paddle.in_dynamic_mode():
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                             0, 'dtype', core.VarDesc.VarType.INT64)
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32',
                 'int64'], 'randint_like')

    inputs = dict()
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint_like')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


887
def randperm(n, dtype="int64", name=None):
C
cc 已提交
888
    """
889 890
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
891 892

    Args:
893 894
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
895 896
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
897
        name (str, optional): The default value is None. Normally there is no
898 899
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
900 901

    Returns:
902 903
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
904 905 906 907

    Examples:
        .. code-block:: python

908
            import paddle
C
cc 已提交
909

910
            out1 = paddle.randperm(5)
911
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
912

913
            out2 = paddle.randperm(7, 'int32')
914
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
915 916
 
    """
917 918 919
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zhiboniu 已提交
920
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
921
        return _C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
922 923 924

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
925 926
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
927 928

    helper = LayerHelper("randperm", **locals())
929 930 931 932
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
933
    out.stop_gradient = True
C
cc 已提交
934
    return out
X
Xing Wu 已提交
935 936


937
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
938
    """
939 940
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
941 942

    Args:
943
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
944 945 946 947
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
948
        dtype (str|np.dtype, optional): The data type of the output Tensor.
949 950 951
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
952
        name (str, optional): The default value is None. Normally there is no
953 954
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
955

X
Xing Wu 已提交
956
    Returns:
957 958
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
959 960 961 962

    Examples:
        .. code-block:: python

963
            import paddle
964

965
            # example 1: attr shape is a list which doesn't contain Tensor.
966
            out1 = paddle.rand(shape=[2, 3])
967 968 969 970
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
971 972
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
973
            out2 = paddle.rand(shape=[dim1, dim2, 2])
974 975 976 977 978 979 980 981
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
982
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
983
            out3 = paddle.rand(shape_tensor)
984 985
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
986 987

    """
988
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
989 990 991


def exponential_(x, lam=1.0, name=None):
992
    r"""
993 994 995 996 997 998 999 1000 1001 1002
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1003
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
Z
zhiboniu 已提交
1023
    if paddle.in_dynamic_mode():
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        return _C_ops.exponential_(x, "lambda", lam)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
    helper.append_op(
        type='exponential',
        inputs={"X": x},
        outputs={'Out': x},
        attrs={"lambda": lam})
    return x