op_converter.h 27.7 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
W
weishengying 已提交
28
#include "paddle/fluid/inference/tensorrt/op_teller.h"
L
Luo Tao 已提交
29
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
41

42 43
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
44 45
                          const framework::Scope& scope,
                          bool test_mode = false) {}
46

47 48
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
49 50
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
51 52
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
W
weishengying 已提交
53 54
                 bool test_mode = false,
                 const framework::proto::BlockDesc* block = nullptr) {
Y
Yan Chunwei 已提交
55
    framework::OpDesc op_desc(op, nullptr);
56 57

    OpConverter* it{nullptr};
L
Luo Tao 已提交
58

59 60 61
    auto converter_type = static_cast<OpConverterType>(
        PADDLE_GET_CONST(int, op_desc.GetAttr("converter_type")));
    switch (converter_type) {
W
weishengying 已提交
62 63 64
      case OpConverterType::Default:
        if (op_desc.Type().find("elementwise") != std::string::npos) {
          static std::unordered_set<std::string> add_tensor_op_set{
65
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
66
          static std::unordered_set<std::string> add_weight_op_set{
67
              "add", "mul", "sub", "div", "max", "min", "pow", "mod"};
W
weishengying 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
          PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                            1UL,
                            platform::errors::InvalidArgument(
                                "The input op's Input(\"Y\")."
                                "size() should equal to 1, but reveceid "
                                "Input(\"Y\").size() = %u.",
                                op_desc.Input("Y").size()));
          int op_type_len = op_desc.Type().size();
          std::string op_type =
              op_desc.Type().substr(op_type_len - 3, op_type_len);
          std::string Y = op_desc.Input("Y")[0];
          if (parameters.count(Y)) {
            PADDLE_ENFORCE_GT(
                add_weight_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_weight");
            PADDLE_ENFORCE_NOT_NULL(
                it,
                platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
          } else {
            PADDLE_ENFORCE_GT(
                add_tensor_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_tensor");
          }
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
N
nhzlx 已提交
105

W
weishengying 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        if (op_desc.Type() == "depthwise_conv2d") {
          it = Registry<OpConverter>::Global().Lookup("conv2d");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "depthwise_conv2d_transpose") {
          it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "transpose2") {
          it = Registry<OpConverter>::Global().Lookup("transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "flatten2") {
          it = Registry<OpConverter>::Global().Lookup("flatten");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        // reshape2 == reshape
        if (op_desc.Type() == "reshape2") {
          it = Registry<OpConverter>::Global().Lookup("reshape");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
142 143 144 145 146 147 148 149
        // lookup_table_v2 == lookup_table
        if (op_desc.Type() == "lookup_table_v2") {
          it = Registry<OpConverter>::Global().Lookup("lookup_table");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
W
weishengying 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        if (!it) {
          it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
        }
        break;

      case OpConverterType::GenericPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use generic_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("generic_plugin_creater");
        break;

      case OpConverterType::CustomPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use custom_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("custom_plugin_creater");
        break;

      default:
        CHECK(false) << "no OpConverter for optype " << op_desc.Type();
169
    }
W
weishengying 已提交
170

S
Shang Zhizhou 已提交
171
    PADDLE_ENFORCE_NOT_NULL(
172 173 174
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
175

176
    it->SetEngine(engine);
177
    engine->SetScope(scope);
W
weishengying 已提交
178
    it->SetBlockDesc(block);
179
    (*it)(op, scope, test_mode);
180

181
    size_t output_num = op_desc.OutputNames().size();
182 183 184
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
R
Ruibiao Chen 已提交
185
          PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
R
Ruibiao Chen 已提交
208
        float out_scale = PADDLE_GET_CONST(
209 210 211
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
212 213 214 215 216
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
217 218 219 220 221 222 223 224 225 226 227 228
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
R
Ruibiao Chen 已提交
229
            PADDLE_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
230 231 232 233 234 235 236 237 238 239
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
R
Ruibiao Chen 已提交
240
            PADDLE_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
241 242 243
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
244 245
      }
    }
L
Luo Tao 已提交
246 247
  }

Y
Yan Chunwei 已提交
248 249
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
250
  void ConvertBlock(const framework::proto::BlockDesc& block,
251
                    const std::unordered_set<std::string>& parameters,
252 253
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
254
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
255
    for (int i = 0; i < block.ops_size(); i++) {
256
      const auto& op = block.ops(i);
W
weishengying 已提交
257
      ConvertOp(op, parameters, scope, engine, false, &block);
L
Luo Tao 已提交
258
    }
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    for (int i = 0; i < engine->network()->getNbLayers(); i++) {
      auto layer = engine->network()->getLayer(i);
      if (layer->getType() == nvinfer1::LayerType::kSHUFFLE) {
        auto* input_tensor = layer->getInput(0);
        auto* output_tensor = layer->getOutput(0);
        auto output_tensor_name = output_tensor->getName();
        auto input_tensor_name = input_tensor->getName();
        if (engine->DynamicRangeIsSet(input_tensor) &&
            !engine->DynamicRangeIsSet(output_tensor)) {
          float output_scale = engine->GetTensorDynamicRange(input_tensor);
          VLOG(1) << "Set output tensor scale = " << output_scale
                  << " for tensor in TensorRT: " << output_tensor_name << ".";
          engine->SetTensorDynamicRange(output_tensor, output_scale);
        } else {
          VLOG(1) << "Failed to get input tensor scale for tensor in TensorRT: "
                  << input_tensor_name << ".";
        }
      }
    }
L
Luo Tao 已提交
278 279
  }

N
nhzlx 已提交
280
  // The scope  here should be inited with the parameter vars.
281
  void ConvertBlockToTRTEngine(
282 283
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
284 285
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
286 287
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
288
    engine->InitNetwork();
289
    bool all_dynamic_shape_set = true;
290 291 292
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
293
      PADDLE_ENFORCE_NOT_NULL(
294 295 296
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
297
      PADDLE_ENFORCE_EQ(
298 299
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
300 301
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
302
      auto var_shape = var->GetShape();
303 304 305 306 307 308
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
309 310 311 312 313 314 315
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
316
        std::vector<int64_t> input_shape;
317 318
        // input_shape.push_back(-1);
        for (size_t i = 0; i < ranks; i++) {
319 320 321 322 323
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
324 325
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
326 327 328 329 330 331
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
332 333 334
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
335 336 337 338
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
339 340 341
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
342
            Vec2TRT_Dims(var_shape, input));
343 344
        VLOG(1) << "Set trt input [" << input << "] type is "
                << var->Proto()->type().lod_tensor().tensor().data_type();
345
      }
346
    }
347 348
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set,
                      true,
349 350 351
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
352 353
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
354

355
    for (auto& output : outputs) {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
      auto* var = block_desc->FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     output.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument(
              "The output tensor in TensorRT subgraph should be LoDTensor"));
      engine->DeclareOutput(
          output,
          FluidDataType2TRT(
              var->Proto()->type().lod_tensor().tensor().data_type()));
      VLOG(6) << "DeclareOutput(name: " << output << ", dtype: "
              << var->Proto()->type().lod_tensor().tensor().data_type() << ")";
372
    }
373

374
    engine->FreezeNetwork();
375
    engine->ClearWeights();
376 377
  }

Z
zhoutianzi666 已提交
378 379
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
380 381
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  nvinfer1::ITensor* Reshape(nvinfer1::ITensor* input,
                             nvinfer1::ITensor* newShape) {
    nvinfer1::ITensor* oldShape = Shape(input);
    if (oldShape == newShape) {
      return input;
    }
    auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
    shuffle->setInput(1, *newShape);
    return shuffle->getOutput(0);
  }

  nvinfer1::ITensor* BroadcastTensor(nvinfer1::ITensor* input,
                                     const int nbDims) {
    auto oldShape = Shape(input);
    auto oldShapeDims = oldShape->getDimensions();
    const int rank = oldShapeDims.nbDims;
    if (rank > nbDims) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot broadcast a higher rank tensor to a lower rank tensor."));
    }
    if (rank < nbDims) {
      nvinfer1::ITensor* concat_shape_tensor;
      auto* one_rank_tensor =
          Add1DConstantLayer(std::vector<int32_t>(nbDims - rank, 1));
      std::vector<nvinfer1::ITensor*> itensors;
      itensors.push_back(one_rank_tensor);
      itensors.push_back(oldShape);
      concat_shape_tensor = Concat(itensors);
      input = Reshape(input, concat_shape_tensor);
    }
    return input;
  }

  nvinfer1::ITensor* BroadcastTensors(nvinfer1::ITensor* a,
                                      nvinfer1::ITensor* b) {
    const int aDims = a->getDimensions().nbDims;
    const int bDims = b->getDimensions().nbDims;
    if (aDims == bDims) {
      VLOG(3) << "Broadcast two equal rank tensors";
    }
    if (aDims > bDims) {
      return BroadcastTensor(b, aDims);
    }
    return BroadcastTensor(a, bDims);
  }

Z
zhoutianzi666 已提交
453 454 455
  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
456 457
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
458 459 460 461 462 463 464
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
465 466
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
467 468 469 470 471 472
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
473 474
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
475 476 477 478 479 480
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
481 482
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
483 484 485 486 487 488
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
489 490
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
491 492 493 494 495 496
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
497 498
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
499 500 501 502 503 504
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
505 506
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
507 508 509 510
            ->getOutput(0);
    return c;
  }

511 512 513 514 515 516 517 518 519 520 521
  nvinfer1::ITensor* FloorDiv(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_,
                             ElementWise,
                             *a,
                             *b,
                             nvinfer1::ElementWiseOperation::kFLOOR_DIV)
            ->getOutput(0);
    return c;
  }

Z
zhoutianzi666 已提交
522 523 524 525 526 527 528 529 530
  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
531 532
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
533
    auto* tensor =
534 535 536 537 538
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
539 540 541
            ->getOutput(0);
    return tensor;
  }
542 543 544
  template <typename T>
  // Create and add Multi-D constant float/int32 layer
  nvinfer1::ITensor* AddConstantLayer(const T* data,
545 546 547 548 549 550 551 552 553 554
                                      nvinfer1::Dims shape,
                                      const std::string& weight_name = "") {
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

555
    int data_size = std::accumulate(
556
        shape.d, shape.d + shape.nbDims, 1, std::multiplies<int>());
557
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
558
    tmp_tensor->Resize({data_size});
559
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
560 561 562 563 564
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

565 566 567 568 569 570
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
    }

    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
571 572
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
573

Z
zhoutianzi666 已提交
574
    auto const_layer =
575
        TRT_ENGINE_ADD_LAYER(engine_, Constant, shape, weight.get());
Z
zhoutianzi666 已提交
576 577 578
    return const_layer->getOutput(0);
  }

579 580 581
  // Create and add 1D constant float/int32 layer
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<T>& data,
Z
zhoutianzi666 已提交
582 583
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
584 585 586 587 588 589 590 591
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

592
    std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
Z
zhoutianzi666 已提交
593 594
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
595
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
596 597 598 599 600
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

601 602 603
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
Z
zhoutianzi666 已提交
604 605
    }

606
    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

625 626
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(T data,
Z
zhoutianzi666 已提交
627 628
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
629 630 631
    std::vector<T> input_data;
    input_data.push_back(data);
    return Add1DConstantLayer(input_data, weight_name, scalar);
Z
zhoutianzi666 已提交
632 633
  }

634
  void RreplenishLayerAndOutput(
635 636
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
637 638
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
639 640 641
    if (layer == nullptr) {
      return;
    }
642
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
643
    std::string layer_name = layer_type + " (Output: ";
644 645 646 647 648 649
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
650 651
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
652
    }
Z
zhoutianzi666 已提交
653
    layer->setName((layer_name + ")").c_str());
654
  }
L
Luo Tao 已提交
655 656
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

W
weishengying 已提交
657 658 659 660
  void SetBlockDesc(const framework::proto::BlockDesc* block) {
    block_ = block;
  }

L
Luo Tao 已提交
661 662
  virtual ~OpConverter() {}

L
Luo Tao 已提交
663 664
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};
W
weishengying 已提交
665 666
  // BlockDesc
  const framework::proto::BlockDesc* block_{nullptr};
L
Luo Tao 已提交
667

668 669 670
 protected:
  bool test_mode_;

L
Luo Tao 已提交
671 672 673 674 675
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
676
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
677
  std::mutex mut_;
L
Luo Tao 已提交
678 679
};

680 681 682 683
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

684 685 686
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
687 688 689
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
690 691 692 693 694 695 696 697
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

698 699 700
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
701
      TouchConverterRegister_##op_type__();