engine.cc 33.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
19

A
Abhinav Arora 已提交
20
#include <string>
W
wanghuancoder 已提交
21

22
#include "NvInferRuntimeCommon.h"
23
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
28
#include "paddle/phi/core/enforce.h"
Y
Yan Chunwei 已提交
29 30 31 32 33

namespace paddle {
namespace inference {
namespace tensorrt {

34 35 36
int TensorRTEngine::runtime_batch_ = 1;
thread_local int TensorRTEngine::predictor_id_per_thread = -1;

37
void TensorRTEngine::Weight::SetDataType(phi::DataType type) {
38
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "Paddle-TRT loads weighths failed, found not supported data type %s.",
          type);
      break;
  }
  w_.type = nv_type;
}

66 67 68 69 70
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
71
    infer_network_.reset(infer_builder_->createNetworkV2(
72 73 74
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
75
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
76
  }
77 78

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
79 80 81
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
82 83
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
nvinfer1::IExecutionContext *TensorRTEngine::context() {
  std::unique_lock<std::mutex> lock(mutex_);
  if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    // We may see trt warning: Profile 0 has been chosen by another
    // IExecutionContext...
    // It's ok. We will set it later.
    nvinfer1::IExecutionContext *infer_context{nullptr};
    if (context_memory_sharing_) {
      infer_context =
          infer_engine_->createExecutionContextWithoutDeviceMemory();
    } else {
      infer_context = infer_engine_->createExecutionContext();
    }
    PADDLE_ENFORCE_NOT_NULL(
        infer_context,
        platform::errors::InvalidArgument(
            "TensorRT engine can not build execution context."));
    if (with_dynamic_shape_) {
      // need new profile if it's not the first
      if (cur_profile_num_ > 0) {
        infer_context->setOptimizationProfile(cur_profile_num_);
      }
      profile_index_[predictor_id_per_thread] = cur_profile_num_;
      ++cur_profile_num_;
    }
    infer_context_[predictor_id_per_thread].reset(infer_context);
  }
  return infer_context_[predictor_id_per_thread].get();
}

118 119
void TensorRTEngine::Execute(int batch_size,
                             std::vector<void *> *buffers,
120
                             cudaStream_t stream) {
N
nhzlx 已提交
121
  freshDeviceId();
122
  auto infer_context = context();
123 124 125 126 127 128 129 130 131 132
  if (context_memory_sharing_) {
    void *context_memory{nullptr};
    context_memory =
        inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
            .getContextMemory(
                predictor_id_per_thread,
                phi::GPUPlace(device_id_),
                phi::Stream(reinterpret_cast<phi::StreamId>(stream)));
    infer_context->setDeviceMemory(context_memory);
  }
W
Wilber 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

  // TODO(wilber): Is cudaGraph has conflict with memory sharing?
  if (startup_with_cudagraph_ && !cudagraph_inited_) {
    // Avoid capturing initialization calls by executing the enqueue function at
    // least once before starting CUDA graph capture.
    const auto ret = Enqueue(infer_context, buffers, batch_size, stream);
    PADDLE_ENFORCE_EQ(
        ret,
        true,
        phi::errors::PreconditionNotMet("Trt CudaGraph test run failed."));
    cudaStreamSynchronize(stream);

    cuda_graph_.BeginCapture(stream);
    // The built TRT engine may contain operations that are not permitted under
    // CUDA graph capture mode. When the stream is capturing, the call may
    // return false if the current CUDA graph capture fails.
    if (Enqueue(infer_context, buffers, batch_size, stream)) {
      cuda_graph_.EndCapture(stream);
      cudagraph_inited_ = true;
    } else {
      cuda_graph_.EndCaptureOnError(stream);
      // Ensure any CUDA error has been cleaned up.
      PADDLE_ENFORCE_GPU_SUCCESS(cudaGetLastError());
      LOG(WARNING) << "The built TensorRT engine contains operations that are "
                      "not permitted under "
                      "CUDA graph capture mode. The specified UseCudaGraph "
                      "flag has been ignored. The inference will be "
                      "launched without using CUDA graph launch.";
      cudagraph_inited_ = false;
    }
    startup_with_cudagraph_ = false;
  }

  Enqueue(infer_context, buffers, batch_size, stream);
}

bool TensorRTEngine::Enqueue(nvinfer1::IExecutionContext *context,
                             std::vector<void *> *buffers,
                             int batch_size,
                             cudaStream_t stream) {
  if (cudagraph_inited_) {
    VLOG(1) << "cuda_graph init success, so we will use cuda graph launch the "
               "entire graph.";
    return cuda_graph_.Launch(stream);
  }

  bool ret;
180
  if (!with_dynamic_shape()) {
W
Wilber 已提交
181
    ret = context->enqueue(batch_size, buffers->data(), stream, nullptr);
182
  } else {
W
Wilber 已提交
183
    ret = context->enqueueV2(buffers->data(), stream, nullptr);
184
  }
N
nhzlx 已提交
185
  SetRuntimeBatch(batch_size);
W
Wilber 已提交
186
  return ret;
N
nhzlx 已提交
187 188
}

Y
Yan Chunwei 已提交
189
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
190
  freshDeviceId();
191
  VLOG(3) << "TRT to freeze network";
192 193 194 195 196 197 198
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
199
  // build engine.
200 201 202
  if (!with_dynamic_shape_) {
    infer_builder_->setMaxBatchSize(max_batch_);
  }
203 204 205 206
#if IS_TRT_VERSION_GE(8300)
  infer_builder_config_->setMemoryPoolLimit(
      nvinfer1::MemoryPoolType::kWORKSPACE, max_workspace_);
#else
207
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
208
#endif
209

210
  bool enable_fp16 = (precision_ == phi::DataType::FLOAT16);
Z
Zhaolong Xing 已提交
211 212
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
213
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
214 215 216
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
217 218
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
219 220 221
    }
  }

222
  bool enable_int8 = (precision_ == phi::DataType::INT8);
Z
Zhaolong Xing 已提交
223
  if (enable_int8) {
C
csy0225 已提交
224 225 226
    if (!use_dla_) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
227 228
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

229
    if (calibrator_) {
230
      infer_builder_config_->setInt8Calibrator(calibrator_);
231
    } else {
232
      infer_builder_config_->setInt8Calibrator(nullptr);
233 234 235 236 237 238 239 240

      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
241 242
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
243 244 245 246
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
247

248 249
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
250 251 252 253
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
254 255 256
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
257 258 259
        }
      }
    }
N
nhzlx 已提交
260
  }
Y
Yan Chunwei 已提交
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
277 278 279
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
280 281 282 283 284
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

285
  if (with_dynamic_shape_) {
286
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
287 288
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
289 290
#if IS_TRT_VERSION_LT(7100)
        // trt6/trt7011 will check all_of input > 0
291 292
        if (!(std::all_of(input.second.begin(),
                          input.second.end(),
W
wenbin 已提交
293 294 295 296 297 298 299 300 301
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
302
#endif
W
wenbin 已提交
303 304 305 306 307 308
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
309 310
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMIN,
W
wenbin 已提交
311 312
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
313 314
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMAX,
W
wenbin 已提交
315 316
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
317 318
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kOPT,
W
wenbin 已提交
319 320
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

      for (int input_id = 0; input_id < network()->getNbInputs(); input_id++) {
        auto input_name = network()->getInput(input_id)->getName();
        if (!itensor_map_.count(input_name)) continue;
        if (!GetITensor(input_name)->isShapeTensor()) continue;
        PADDLE_ENFORCE_EQ(min_shape_tensor_.count(input_name) &&
                              max_shape_tensor_.count(input_name) &&
                              optim_shape_tensor_.count(input_name),
                          true,
                          platform::errors::InvalidArgument(
                              "Fail to find min/max/optim shape value for TRT "
                              "network's shape tensor input named %s.",
                              input_name));
        auto min_vec = min_shape_tensor_.at(input_name);
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMIN,
                                           min_vec.data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMAX,
                                           max_shape_tensor_[input_name].data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(
            input_name,
            nvinfer1::OptProfileSelector::kOPT,
            optim_shape_tensor_[input_name].data(),
            min_vec.size());
      }

W
wenbin 已提交
350
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
351
    }
352 353 354 355 356 357
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
358
    }
359
  }
360
#if IS_TRT_VERSION_GE(8200)
361 362 363 364
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
365 366
#endif

367
#if IS_TRT_VERSION_LT(8000)
368 369
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
370
#else
Z
zlsh80826 已提交
371
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
372
      *network(), *infer_builder_config_));
373 374 375
  infer_runtime_.reset(createInferRuntime(&logger_));
  infer_engine_.reset(infer_runtime_->deserializeCudaEngine(
      ihost_memory_->data(), ihost_memory_->size()));
376
#endif
377

378
  PADDLE_ENFORCE_NOT_NULL(
379 380 381 382
      infer_engine_,
      platform::errors::Fatal(
          "Build TensorRT cuda engine failed! Please recheck "
          "you configurations related to paddle-TensorRT."));
383

W
wenbin 已提交
384 385 386 387 388 389
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }
390 391 392 393 394 395
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
396 397 398
  if (use_inspector_) {
    GetEngineInfo();
  }
Y
Yan Chunwei 已提交
399 400
}

401
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
402
                                                nvinfer1::DataType dtype,
403
                                                const nvinfer1::Dims &dims) {
404 405
  PADDLE_ENFORCE_EQ(network() != nullptr,
                    true,
406 407 408
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
409
  PADDLE_ENFORCE_NOT_NULL(
410 411 412 413 414 415 416
      input,
      platform::errors::InvalidArgument("Adding input %s failed in "
                                        "TensorRT inference network. "
                                        "Please recheck your input.",
                                        name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(),
                    true,
417 418 419 420
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
421
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
422 423 424
  return input;
}

425 426
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer,
                                   int offset,
427 428
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
429
  SetITensor(name, output);
430
  PADDLE_ENFORCE_NOT_NULL(
431 432 433
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
434
  output->setName(name.c_str());
435 436
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
437 438 439 440
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
441
  network()->markOutput(*output);
442
  PADDLE_ENFORCE_EQ(
443 444
      output->isNetworkOutput(),
      true,
445 446 447
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
448 449
}

450 451
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
452
  PADDLE_ENFORCE_NOT_NULL(
453 454 455
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
456
  output->setName(name.c_str());
457 458
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
459 460 461 462
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
463
  network()->markOutput(*output);
L
Luo Tao 已提交
464
}
465 466 467 468 469 470 471 472

void TensorRTEngine::DeclareOutput(const std::string &name,
                                   nvinfer1::DataType dtype) {
  auto *output = TensorRTEngine::GetITensor(name);
  DeclareOutput(name);
  output->setType(dtype);
}

473 474 475 476 477 478 479 480 481 482 483 484 485
void TensorRTEngine::DeleteITensor(const std::string &name,
                                   nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE_NOT_NULL(
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      true,
      itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null", name));
  itensor_map_.erase(name);
}
L
Luo Tao 已提交
486

487 488
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
489
  PADDLE_ENFORCE_NOT_NULL(
490 491 492
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
493
  PADDLE_ENFORCE_EQ(
494 495
      0,
      itensor_map_.count(name),
496 497
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
498 499 500
  itensor_map_[name] = tensor;
}

501 502 503 504 505
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name,
                                              bool scalar) {
  if (scalar) {
    return ConvertWeight2ITensor(name, true);
  }
506 507 508 509 510 511 512 513 514 515 516
  if (itensor_map_.count(name)) {
    return itensor_map_[name];
  } else {
    ConvertWeight2ITensor(name);
    return itensor_map_[name];
  }
}

// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
517
    const std::string &name, bool scalar) {
518 519 520 521 522 523 524
  auto *var_v = scope_->FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(
      var_v,
      platform::errors::NotFound("You are converting a persistable weight to a "
                                 "tensor, but there is no "
                                 "persistable variable called %s in scope.",
                                 name));
525
  auto *var_t = var_v->GetMutable<phi::DenseTensor>();
526 527 528 529 530 531 532 533 534
  auto weight = this->GetTrtWeight(name, *var_t);

  // Now we have create weights, then we need create a itensor
  auto var_dims = var_t->dims();
  nvinfer1::Dims trt_in_shape;
  trt_in_shape.nbDims = var_t->dims().size();
  for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
    trt_in_shape.d[i] = var_dims[i];
  }
535 536 537 538 539
  // Make 0-D tensor to 1-D tensor.
  if (trt_in_shape.nbDims == 0) {
    trt_in_shape.nbDims = 1;
    trt_in_shape.d[0] = 1;
  }
540 541 542 543 544 545 546 547
  // In fact , this is not always right, because we can't determine if the 0th
  // dimension is batch. Just for run chenqu's model
  if (!this->with_dynamic_shape()) {
    trt_in_shape.nbDims--;
    for (int i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = trt_in_shape.d[i + 1];
    }
  }
548 549 550 551
  if (scalar) {
    trt_in_shape.nbDims = 0;
    trt_in_shape.d[0] = var_dims[0];
  }
552 553
  nvinfer1::ILayer *layer =
      TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
554 555 556
  if (!scalar) {
    this->SetITensor(name, layer->getOutput(0));
  }
557
  return layer->getOutput(0);
L
Luo Tao 已提交
558 559
}

560 561 562 563 564
std::unordered_map<std::string, nvinfer1::ITensor *>
    *TensorRTEngine::GetITensorMap() {
  return &itensor_map_;
}

565 566
void TensorRTEngine::Deserialize(const std::string &engine_serialized_data) {
  freshDeviceId();
567
  infer_runtime_.reset(createInferRuntime(&logger_));
568 569

  if (use_dla_) {
570 571
    if (precision_ != phi::DataType::INT8 &&
        precision_ != phi::DataType::FLOAT16) {
572 573
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
574
    } else if (infer_runtime_->getNbDLACores() == 0) {
575 576 577 578
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
579
      if (dla_core_ < 0 || dla_core_ >= infer_runtime_->getNbDLACores()) {
580 581
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
582 583
                     << infer_runtime_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
584
      }
585
      infer_runtime_->setDLACore(dla_core_);
586 587 588 589 590
      LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                << dla_core_;
    }
  }

591
  infer_engine_.reset(infer_runtime_->deserializeCudaEngine(
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
      engine_serialized_data.c_str(), engine_serialized_data.size()));

  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_,
      platform::errors::Fatal(
          "Building TRT cuda engine failed when deserializing engine info. "
          "Please check:\n1. Your TRT serialization is generated and loaded "
          "on the same GPU architecture;\n2. The Paddle Inference version of "
          "generating serialization file and doing inference are "
          "consistent."));

  binding_num_ = infer_engine_->getNbBindings();
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
610 611 612
  if (use_inspector_) {
    GetEngineInfo();
  }
613 614
}

615 616 617 618
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

619 620
// Note: Only for support plugin.
TensorRTEngine::Weight TensorRTEngine::GetFp16TrtWeight(
621
    const std::string &name, const phi::DenseTensor &weight_tensor) {
622 623 624 625 626 627 628 629 630 631 632
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
633
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
634 635 636 637 638
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

Y
Yuanle Liu 已提交
639
  // if trt not support dtype, we need to cast to fp16.
640
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
641
    phi::DenseTensor bf16_tensor;
642 643 644
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
645
    weight_map[name_with_suffix]->set_type(phi::DataType::FLOAT16);
646 647 648 649 650 651
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(bf16_data[i]);
    }
Y
Yuanle Liu 已提交
652 653
    weight.SetDataType(phi::DataType::FLOAT16);
    weight.SetValues(fp16_data);
654
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT32) {
655
    phi::DenseTensor fp32_tensor;
656 657 658
    fp32_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp32_tensor);
659
    weight_map[name_with_suffix]->set_type(phi::DataType::FLOAT16);
660 661 662 663 664 665
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *fp32_data = fp32_tensor.mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(fp32_data[i]);
    }
Y
Yuanle Liu 已提交
666 667 668 669 670 671 672
    weight.SetDataType(phi::DataType::FLOAT16);
    weight.SetValues(fp16_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
    phi::DenseTensor int64_tensor;
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
673
    weight_map[name_with_suffix]->set_type(phi::DataType::INT32);
Y
Yuanle Liu 已提交
674 675 676 677 678 679 680 681
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::INT32);
    weight.SetValues(int32_data);
682 683 684
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
Y
Yuanle Liu 已提交
685 686
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
687 688 689 690 691 692
  }
  name_suffix_counter += 1;
  return weight;
}

// Note: Only for support plugin.
693
TensorRTEngine::Weight TensorRTEngine::GetFp32TrtWeight(
694
    const std::string &name, const phi::DenseTensor &weight_tensor) {
695 696 697 698
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
699
  platform::CPUPlace cpu_place;
700 701 702 703 704 705
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
706
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
707 708 709 710 711
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

Y
Yuanle Liu 已提交
712
  // if trt not support dtype, we need to cast to fp32.
713
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
714
    phi::DenseTensor bf16_tensor;
715 716 717
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
718
    weight_map[name_with_suffix]->set_type(phi::DataType::FLOAT32);
719 720 721 722 723 724
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
Y
Yuanle Liu 已提交
725 726
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
727
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT16) {
728
    phi::DenseTensor fp16_tensor;
729 730 731
    fp16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp16_tensor);
732
    weight_map[name_with_suffix]->set_type(phi::DataType::FLOAT32);
733 734 735 736 737 738
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *fp16_data = fp16_tensor.mutable_data<float16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(fp16_data[i]);
    }
Y
Yuanle Liu 已提交
739 740 741 742 743 744 745
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
    phi::DenseTensor int64_tensor;
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
746
    weight_map[name_with_suffix]->set_type(phi::DataType::INT32);
Y
Yuanle Liu 已提交
747 748 749 750 751 752 753 754
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::INT32);
    weight.SetValues(int32_data);
755 756 757
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
Y
Yuanle Liu 已提交
758 759
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
760 761 762
  }
  name_suffix_counter += 1;
  return weight;
763 764
}

765
TensorRTEngine::Weight TensorRTEngine::GetTrtWeight(
766
    const std::string &name, const phi::DenseTensor &weight_tensor) {
767 768 769 770 771 772 773 774 775 776 777 778
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));

779 780 781 782 783
  if (weight_tensor.place() == PlaceType::kGPU ||
      weight_tensor.dtype() != phi::DataType::FLOAT32) {
    weight_map[name_with_suffix].reset(new phi::DenseTensor());
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
  }
784 785 786 787 788 789

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

  // if trt not support dtype, we need to cast to fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
790
    phi::DenseTensor bf16_tensor;
791 792 793
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
794
    weight_map[name_with_suffix]->set_type(phi::DataType::FLOAT32);
795 796 797 798 799 800 801 802 803
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
804
    phi::DenseTensor int64_tensor;
805 806 807
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
808
    weight_map[name_with_suffix]->set_type(phi::DataType::INT32);
Y
Yuanle Liu 已提交
809 810
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
811 812 813 814
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
Z
zhoutianzi666 已提交
815
    weight.SetDataType(phi::DataType::INT32);
816 817
    weight.SetValues(int32_data);
  } else {
818 819 820 821 822 823 824 825 826
    if (weight_tensor.place() == PlaceType::kGPU) {
      paddle::framework::TensorCopySync(
          weight_tensor, cpu_place, weight_map[name_with_suffix].get());
      weight.SetDataType(weight_tensor.dtype());
      weight.SetValues(weight_map[name_with_suffix]->data());
    } else {
      weight.SetDataType(weight_tensor.dtype());
      weight.SetValues(weight_tensor.data());
    }
827
  }
828

829 830 831
  name_suffix_counter += 1;
  return weight;
}
832

833 834
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

835
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
836 837
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
838
    plugin::PluginTensorRT *plugin) {
839
  owned_plugin_.emplace_back(plugin);
840
  return network()->addPluginV2(inputs, num_inputs, *plugin);
841 842
}

843
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
844 845
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
846 847 848 849 850
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

851
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
852 853
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
854 855 856 857 858
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
859 860 861
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
862 863
  PADDLE_ENFORCE_LT(device_id_,
                    count,
864 865
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
866 867
                        device_id_,
                        count));
L
Leo Chen 已提交
868
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
869 870
}

871 872 873 874 875
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
876 877
  auto *infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
878 879 880 881
  for (int i = 0; i < infer_engine_->getNbLayers(); ++i) {
    LOG(INFO) << infer_inspector->getLayerInformation(
        i, nvinfer1::LayerInformationFormat::kJSON);
  }
882 883 884 885 886 887
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
888 889 890
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle