engine.cc 32.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
19

A
Abhinav Arora 已提交
20
#include <string>
W
wanghuancoder 已提交
21

22
#include "NvInferRuntimeCommon.h"
23
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/phi/common/data_type.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

33 34 35
int TensorRTEngine::runtime_batch_ = 1;
thread_local int TensorRTEngine::predictor_id_per_thread = -1;

36
void TensorRTEngine::Weight::SetDataType(phi::DataType type) {
37
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "Paddle-TRT loads weighths failed, found not supported data type %s.",
          type);
      break;
  }
  w_.type = nv_type;
}

65 66 67 68 69
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
70
    infer_network_.reset(infer_builder_->createNetworkV2(
71 72 73
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
74
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
75
  }
76 77

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
78 79 80
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
nvinfer1::IExecutionContext *TensorRTEngine::context() {
  std::unique_lock<std::mutex> lock(mutex_);
  if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    // We may see trt warning: Profile 0 has been chosen by another
    // IExecutionContext...
    // It's ok. We will set it later.
    nvinfer1::IExecutionContext *infer_context{nullptr};
    if (context_memory_sharing_) {
      infer_context =
          infer_engine_->createExecutionContextWithoutDeviceMemory();
    } else {
      infer_context = infer_engine_->createExecutionContext();
    }
    PADDLE_ENFORCE_NOT_NULL(
        infer_context,
        platform::errors::InvalidArgument(
            "TensorRT engine can not build execution context."));
    if (with_dynamic_shape_) {
      // need new profile if it's not the first
      if (cur_profile_num_ > 0) {
        infer_context->setOptimizationProfile(cur_profile_num_);
      }
      profile_index_[predictor_id_per_thread] = cur_profile_num_;
      ++cur_profile_num_;
    }
    infer_context_[predictor_id_per_thread].reset(infer_context);
  }
  return infer_context_[predictor_id_per_thread].get();
}

117 118
void TensorRTEngine::Execute(int batch_size,
                             std::vector<void *> *buffers,
119
                             cudaStream_t stream) {
N
nhzlx 已提交
120
  freshDeviceId();
121
  auto infer_context = context();
122 123 124 125 126 127 128 129 130 131
  if (context_memory_sharing_) {
    void *context_memory{nullptr};
    context_memory =
        inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
            .getContextMemory(
                predictor_id_per_thread,
                phi::GPUPlace(device_id_),
                phi::Stream(reinterpret_cast<phi::StreamId>(stream)));
    infer_context->setDeviceMemory(context_memory);
  }
132 133 134 135
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
136
  }
N
nhzlx 已提交
137 138 139
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
140
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
141
  freshDeviceId();
142
  VLOG(3) << "TRT to freeze network";
143 144 145 146 147 148 149
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
150 151
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
152 153 154 155
#if IS_TRT_VERSION_GE(8300)
  infer_builder_config_->setMemoryPoolLimit(
      nvinfer1::MemoryPoolType::kWORKSPACE, max_workspace_);
#else
156
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
157
#endif
Z
Zhaolong Xing 已提交
158 159 160
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
161
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
162 163 164
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
165 166
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
167 168 169
    }
  }

170
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
171
  if (enable_int8) {
C
csy0225 已提交
172 173 174
    if (!use_dla_) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
175 176
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

177
    if (calibrator_) {
178
      infer_builder_config_->setInt8Calibrator(calibrator_);
179
    } else {
180
      infer_builder_config_->setInt8Calibrator(nullptr);
181 182 183 184 185 186 187 188

      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
189 190
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
191 192 193 194
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
195

196 197
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
198 199 200 201
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
202 203 204
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
205 206 207
        }
      }
    }
N
nhzlx 已提交
208
  }
Y
Yan Chunwei 已提交
209

210 211 212 213 214 215 216 217 218 219 220 221
  // If model is mixed precision, then we should cast all float output to
  // float32 precision. Otherwise, we can not confirm the output precision of
  // the trt engine.
  if (model_precision_ != phi::DataType::FLOAT32) {
    for (int i = 0; i < network()->getNbOutputs(); ++i) {
      network()->getOutput(i)->setAllowedFormats(
          static_cast<nvinfer1::TensorFormats>(
              1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR)));
      network()->getOutput(i)->setType(nvinfer1::DataType::kFLOAT);
    }
  }

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
237 238 239
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
240 241 242 243 244
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

245
  if (with_dynamic_shape_) {
246
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
247 248
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
249
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
250
        // trt6 will check all_of input > 0
251 252
        if (!(std::all_of(input.second.begin(),
                          input.second.end(),
W
wenbin 已提交
253 254 255 256 257 258 259 260 261
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
262
#endif
W
wenbin 已提交
263 264 265 266 267 268
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
269 270
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMIN,
W
wenbin 已提交
271 272
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
273 274
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMAX,
W
wenbin 已提交
275 276
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
277 278
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kOPT,
W
wenbin 已提交
279 280
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

      for (int input_id = 0; input_id < network()->getNbInputs(); input_id++) {
        auto input_name = network()->getInput(input_id)->getName();
        if (!itensor_map_.count(input_name)) continue;
        if (!GetITensor(input_name)->isShapeTensor()) continue;
        PADDLE_ENFORCE_EQ(min_shape_tensor_.count(input_name) &&
                              max_shape_tensor_.count(input_name) &&
                              optim_shape_tensor_.count(input_name),
                          true,
                          platform::errors::InvalidArgument(
                              "Fail to find min/max/optim shape value for TRT "
                              "network's shape tensor input named %s.",
                              input_name));
        auto min_vec = min_shape_tensor_.at(input_name);
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMIN,
                                           min_vec.data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMAX,
                                           max_shape_tensor_[input_name].data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(
            input_name,
            nvinfer1::OptProfileSelector::kOPT,
            optim_shape_tensor_[input_name].data(),
            min_vec.size());
      }

W
wenbin 已提交
310
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
311
    }
312 313 314 315 316 317
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
318
    }
319
  }
320
#if IS_TRT_VERSION_GE(8200)
321 322 323 324
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
325 326
#endif

327
#if IS_TRT_VERSION_LT(8000)
328 329
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
330
#else
J
JingZhuangzhuang 已提交
331
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
332
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
333 334
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
335 336
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
337
#endif
338

339
  PADDLE_ENFORCE_NOT_NULL(
340 341 342 343
      infer_engine_,
      platform::errors::Fatal(
          "Build TensorRT cuda engine failed! Please recheck "
          "you configurations related to paddle-TensorRT."));
344

W
wenbin 已提交
345 346 347 348 349 350
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }
351 352 353 354 355 356
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
W
wenbin 已提交
357

358
  GetEngineInfo();
Y
Yan Chunwei 已提交
359 360
}

361
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
362
                                                nvinfer1::DataType dtype,
363
                                                const nvinfer1::Dims &dims) {
364 365
  PADDLE_ENFORCE_EQ(network() != nullptr,
                    true,
366 367 368
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
369
  PADDLE_ENFORCE_NOT_NULL(
370 371 372 373 374 375 376
      input,
      platform::errors::InvalidArgument("Adding input %s failed in "
                                        "TensorRT inference network. "
                                        "Please recheck your input.",
                                        name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(),
                    true,
377 378 379 380
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
381
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
382 383 384
  return input;
}

385 386
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer,
                                   int offset,
387 388
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
389
  SetITensor(name, output);
390
  PADDLE_ENFORCE_NOT_NULL(
391 392 393
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
394
  output->setName(name.c_str());
395 396
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
397 398 399 400
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
401
  network()->markOutput(*output);
402
  PADDLE_ENFORCE_EQ(
403 404
      output->isNetworkOutput(),
      true,
405 406 407
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
408 409
}

410 411
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
412
  PADDLE_ENFORCE_NOT_NULL(
413 414 415
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
416
  output->setName(name.c_str());
417 418
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
419 420 421 422
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
423
  network()->markOutput(*output);
L
Luo Tao 已提交
424
}
425 426 427 428 429 430 431 432 433 434 435 436 437
void TensorRTEngine::DeleteITensor(const std::string &name,
                                   nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE_NOT_NULL(
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      true,
      itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null", name));
  itensor_map_.erase(name);
}
L
Luo Tao 已提交
438

439 440
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
441
  PADDLE_ENFORCE_NOT_NULL(
442 443 444
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
445
  PADDLE_ENFORCE_EQ(
446 447
      0,
      itensor_map_.count(name),
448 449
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
450 451 452
  itensor_map_[name] = tensor;
}

453 454 455 456 457
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name,
                                              bool scalar) {
  if (scalar) {
    return ConvertWeight2ITensor(name, true);
  }
458 459 460 461 462 463 464 465 466 467 468
  if (itensor_map_.count(name)) {
    return itensor_map_[name];
  } else {
    ConvertWeight2ITensor(name);
    return itensor_map_[name];
  }
}

// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
469
    const std::string &name, bool scalar) {
470 471 472 473 474 475 476
  auto *var_v = scope_->FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(
      var_v,
      platform::errors::NotFound("You are converting a persistable weight to a "
                                 "tensor, but there is no "
                                 "persistable variable called %s in scope.",
                                 name));
477
  auto *var_t = var_v->GetMutable<phi::DenseTensor>();
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  auto weight = this->GetTrtWeight(name, *var_t);

  // Now we have create weights, then we need create a itensor
  auto var_dims = var_t->dims();
  nvinfer1::Dims trt_in_shape;
  trt_in_shape.nbDims = var_t->dims().size();
  for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
    trt_in_shape.d[i] = var_dims[i];
  }
  // In fact , this is not always right, because we can't determine if the 0th
  // dimension is batch. Just for run chenqu's model
  if (!this->with_dynamic_shape()) {
    trt_in_shape.nbDims--;
    for (int i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = trt_in_shape.d[i + 1];
    }
  }
495 496 497 498
  if (scalar) {
    trt_in_shape.nbDims = 0;
    trt_in_shape.d[0] = var_dims[0];
  }
499 500
  nvinfer1::ILayer *layer =
      TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
501 502 503
  if (!scalar) {
    this->SetITensor(name, layer->getOutput(0));
  }
504
  return layer->getOutput(0);
L
Luo Tao 已提交
505 506
}

507 508 509 510 511
std::unordered_map<std::string, nvinfer1::ITensor *>
    *TensorRTEngine::GetITensorMap() {
  return &itensor_map_;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
void TensorRTEngine::Deserialize(const std::string &engine_serialized_data) {
  freshDeviceId();
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));

  if (use_dla_) {
    if (precision_ != AnalysisConfig::Precision::kInt8 &&
        precision_ != AnalysisConfig::Precision::kHalf) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (runtime->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << runtime->getNbDLACores() << ", but got " << dla_core_
                     << ", so use use 0 as default.";
      }
      runtime->setDLACore(dla_core_);
      LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                << dla_core_;
    }
  }

  infer_engine_.reset(runtime->deserializeCudaEngine(
      engine_serialized_data.c_str(), engine_serialized_data.size()));

  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_,
      platform::errors::Fatal(
          "Building TRT cuda engine failed when deserializing engine info. "
          "Please check:\n1. Your TRT serialization is generated and loaded "
          "on the same GPU architecture;\n2. The Paddle Inference version of "
          "generating serialization file and doing inference are "
          "consistent."));

  binding_num_ = infer_engine_->getNbBindings();
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }

  GetEngineInfo();
}

561 562 563 564
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

565 566
// Note: Only for support plugin.
TensorRTEngine::Weight TensorRTEngine::GetFp16TrtWeight(
567
    const std::string &name, const phi::DenseTensor &weight_tensor) {
568 569 570 571 572 573 574 575 576 577 578
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
579
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
580 581 582 583 584
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

Y
Yuanle Liu 已提交
585
  // if trt not support dtype, we need to cast to fp16.
586
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
587
    phi::DenseTensor bf16_tensor;
588 589 590 591 592 593 594 595 596 597 598
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(bf16_data[i]);
    }
Y
Yuanle Liu 已提交
599 600
    weight.SetDataType(phi::DataType::FLOAT16);
    weight.SetValues(fp16_data);
601
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT32) {
602
    phi::DenseTensor fp32_tensor;
603 604 605 606 607 608 609 610 611 612 613
    fp32_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp32_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *fp32_data = fp32_tensor.mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(fp32_data[i]);
    }
Y
Yuanle Liu 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    weight.SetDataType(phi::DataType::FLOAT16);
    weight.SetValues(fp16_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
    phi::DenseTensor int64_tensor;
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::INT32);
    weight.SetValues(int32_data);
631 632 633
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
Y
Yuanle Liu 已提交
634 635
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
636 637 638 639 640 641
  }
  name_suffix_counter += 1;
  return weight;
}

// Note: Only for support plugin.
642
TensorRTEngine::Weight TensorRTEngine::GetFp32TrtWeight(
643
    const std::string &name, const phi::DenseTensor &weight_tensor) {
644 645 646 647
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
648
  platform::CPUPlace cpu_place;
649 650 651 652 653 654
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
655
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
656 657 658 659 660
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

Y
Yuanle Liu 已提交
661
  // if trt not support dtype, we need to cast to fp32.
662
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
663
    phi::DenseTensor bf16_tensor;
664 665 666 667 668 669 670 671 672 673 674
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
Y
Yuanle Liu 已提交
675 676
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
677
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT16) {
678
    phi::DenseTensor fp16_tensor;
679 680 681 682 683 684 685 686 687 688 689
    fp16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *fp16_data = fp16_tensor.mutable_data<float16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(fp16_data[i]);
    }
Y
Yuanle Liu 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
    phi::DenseTensor int64_tensor;
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::INT32);
    weight.SetValues(int32_data);
707 708 709
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
Y
Yuanle Liu 已提交
710 711
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
712 713 714
  }
  name_suffix_counter += 1;
  return weight;
715 716
}

717
TensorRTEngine::Weight TensorRTEngine::GetTrtWeight(
718
    const std::string &name, const phi::DenseTensor &weight_tensor) {
719 720 721 722 723 724 725 726 727 728 729 730
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));

731 732 733 734 735
  if (weight_tensor.place() == PlaceType::kGPU ||
      weight_tensor.dtype() != phi::DataType::FLOAT32) {
    weight_map[name_with_suffix].reset(new phi::DenseTensor());
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
  }
736 737 738 739 740 741

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

  // if trt not support dtype, we need to cast to fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
742
    phi::DenseTensor bf16_tensor;
743 744 745 746 747 748 749 750 751 752 753 754 755 756
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
757
    phi::DenseTensor int64_tensor;
758 759 760 761 762
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
Y
Yuanle Liu 已提交
763 764
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
765 766 767 768
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
Z
zhoutianzi666 已提交
769
    weight.SetDataType(phi::DataType::INT32);
770 771
    weight.SetValues(int32_data);
  } else {
772 773 774 775 776 777 778 779 780
    if (weight_tensor.place() == PlaceType::kGPU) {
      paddle::framework::TensorCopySync(
          weight_tensor, cpu_place, weight_map[name_with_suffix].get());
      weight.SetDataType(weight_tensor.dtype());
      weight.SetValues(weight_map[name_with_suffix]->data());
    } else {
      weight.SetDataType(weight_tensor.dtype());
      weight.SetValues(weight_tensor.data());
    }
781
  }
782

783 784 785
  name_suffix_counter += 1;
  return weight;
}
786

787 788
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

789
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
790 791
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
792
    plugin::PluginTensorRT *plugin) {
793
  owned_plugin_.emplace_back(plugin);
794
  return network()->addPluginV2(inputs, num_inputs, *plugin);
795 796
}

797
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
798 799
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
800 801 802 803 804
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

805
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
806 807
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
808 809 810 811 812
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
813 814 815
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
816 817
  PADDLE_ENFORCE_LT(device_id_,
                    count,
818 819
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
820 821
                        device_id_,
                        count));
L
Leo Chen 已提交
822
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
823 824
}

825 826 827 828 829
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
830 831
  auto *infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
832 833 834 835 836 837 838 839
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
840 841 842
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle