engine.cc 8.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

35 36
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
37
  freshDeviceId();
N
nhzlx 已提交
38
  batch_size_ = batch_size;
39 40
  infer_context_->enqueue(batch_size, buffers->data(), stream, nullptr);
  cudaStreamSynchronize(stream);
N
nhzlx 已提交
41 42 43
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
44
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
45
  freshDeviceId();
46
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
N
nhzlx 已提交
54
  if (enable_int8_) {
N
nhzlx 已提交
55
    infer_builder_->setInt8Mode(true);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
N
nhzlx 已提交
90
  }
Y
Yan Chunwei 已提交
91 92 93 94 95 96 97

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());
}

98
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
99
                                                nvinfer1::DataType dtype,
100
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
101 102 103 104
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
105
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
106
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
107
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
108
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
109
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
110
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
111 112 113
  return input;
}

114 115
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
116 117 118
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

119
  auto *output = layer->getOutput(offset);
120
  SetITensor(name, output);
Y
Yan Chunwei 已提交
121 122
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
123
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
124
  infer_network_->markOutput(*output);
125
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
126 127 128 129 130
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
131 132 133 134
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

135
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
136 137 138
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

139
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
140 141
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
142
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
143 144 145 146 147 148
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

149 150
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
151
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
152
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
153 154 155 156
                    name);
  itensor_map_[name] = tensor;
}

157
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
158
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
159 160 161
  return itensor_map_[name];
}

162 163 164 165
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE(!weight_map.count(name),
                 "During TRT Op converter: We set weight %s with the same name "
                 "twice into the weight_map",
                 name);
  weight_map[name].reset(new framework::Tensor());
  weight_map[name]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name].get());
  float *weight_data = weight_map[name]->mutable_data<float>(cpu_place);

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
    // when the op is conv, the scale's size should be w_dims[0]
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

207 208
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
209
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
210 211
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
212
  owned_plugin_.emplace_back(plugin);
213
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
214 215
}

N
nhzlx 已提交
216 217 218 219 220 221 222
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
223 224 225
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle