engine.cc 32.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
19

A
Abhinav Arora 已提交
20
#include <string>
W
wanghuancoder 已提交
21

22
#include "NvInferRuntimeCommon.h"
23
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/phi/common/data_type.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

33 34 35
int TensorRTEngine::runtime_batch_ = 1;
thread_local int TensorRTEngine::predictor_id_per_thread = -1;

36
void TensorRTEngine::Weight::SetDataType(phi::DataType type) {
37
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "Paddle-TRT loads weighths failed, found not supported data type %s.",
          type);
      break;
  }
  w_.type = nv_type;
}

65 66 67 68 69
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
70
    infer_network_.reset(infer_builder_->createNetworkV2(
71 72 73
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
74
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
75
  }
76 77

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
78 79 80
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
nvinfer1::IExecutionContext *TensorRTEngine::context() {
  std::unique_lock<std::mutex> lock(mutex_);
  if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    // We may see trt warning: Profile 0 has been chosen by another
    // IExecutionContext...
    // It's ok. We will set it later.
    nvinfer1::IExecutionContext *infer_context{nullptr};
    if (context_memory_sharing_) {
      infer_context =
          infer_engine_->createExecutionContextWithoutDeviceMemory();
    } else {
      infer_context = infer_engine_->createExecutionContext();
    }
    PADDLE_ENFORCE_NOT_NULL(
        infer_context,
        platform::errors::InvalidArgument(
            "TensorRT engine can not build execution context."));
    if (with_dynamic_shape_) {
      // need new profile if it's not the first
      if (cur_profile_num_ > 0) {
        infer_context->setOptimizationProfile(cur_profile_num_);
      }
      profile_index_[predictor_id_per_thread] = cur_profile_num_;
      ++cur_profile_num_;
    }
    infer_context_[predictor_id_per_thread].reset(infer_context);
  }
  return infer_context_[predictor_id_per_thread].get();
}

117 118
void TensorRTEngine::Execute(int batch_size,
                             std::vector<void *> *buffers,
119
                             cudaStream_t stream) {
N
nhzlx 已提交
120
  freshDeviceId();
121
  auto infer_context = context();
122 123 124 125 126 127 128 129 130 131
  if (context_memory_sharing_) {
    void *context_memory{nullptr};
    context_memory =
        inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
            .getContextMemory(
                predictor_id_per_thread,
                phi::GPUPlace(device_id_),
                phi::Stream(reinterpret_cast<phi::StreamId>(stream)));
    infer_context->setDeviceMemory(context_memory);
  }
132 133 134 135
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
136
  }
N
nhzlx 已提交
137 138 139
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
140
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
141
  freshDeviceId();
142
  VLOG(3) << "TRT to freeze network";
143 144 145 146 147 148 149
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
150
  // build engine.
151 152 153
  if (!with_dynamic_shape_) {
    infer_builder_->setMaxBatchSize(max_batch_);
  }
154 155 156 157
#if IS_TRT_VERSION_GE(8300)
  infer_builder_config_->setMemoryPoolLimit(
      nvinfer1::MemoryPoolType::kWORKSPACE, max_workspace_);
#else
158
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
159
#endif
Z
Zhaolong Xing 已提交
160 161 162
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
163
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
164 165 166
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
167 168
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
169 170 171
    }
  }

172
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
173
  if (enable_int8) {
C
csy0225 已提交
174 175 176
    if (!use_dla_) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
177 178
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

179
    if (calibrator_) {
180
      infer_builder_config_->setInt8Calibrator(calibrator_);
181
    } else {
182
      infer_builder_config_->setInt8Calibrator(nullptr);
183 184 185 186 187 188 189 190

      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
191 192
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
193 194 195 196
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
197

198 199
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
200 201 202 203
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
204 205 206
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
207 208 209
        }
      }
    }
N
nhzlx 已提交
210
  }
Y
Yan Chunwei 已提交
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
227 228 229
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
230 231 232 233 234
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

235
  if (with_dynamic_shape_) {
236
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
237 238
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
239
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
240
        // trt6 will check all_of input > 0
241 242
        if (!(std::all_of(input.second.begin(),
                          input.second.end(),
W
wenbin 已提交
243 244 245 246 247 248 249 250 251
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
252
#endif
W
wenbin 已提交
253 254 255 256 257 258
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
259 260
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMIN,
W
wenbin 已提交
261 262
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
263 264
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMAX,
W
wenbin 已提交
265 266
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
267 268
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kOPT,
W
wenbin 已提交
269 270
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

      for (int input_id = 0; input_id < network()->getNbInputs(); input_id++) {
        auto input_name = network()->getInput(input_id)->getName();
        if (!itensor_map_.count(input_name)) continue;
        if (!GetITensor(input_name)->isShapeTensor()) continue;
        PADDLE_ENFORCE_EQ(min_shape_tensor_.count(input_name) &&
                              max_shape_tensor_.count(input_name) &&
                              optim_shape_tensor_.count(input_name),
                          true,
                          platform::errors::InvalidArgument(
                              "Fail to find min/max/optim shape value for TRT "
                              "network's shape tensor input named %s.",
                              input_name));
        auto min_vec = min_shape_tensor_.at(input_name);
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMIN,
                                           min_vec.data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMAX,
                                           max_shape_tensor_[input_name].data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(
            input_name,
            nvinfer1::OptProfileSelector::kOPT,
            optim_shape_tensor_[input_name].data(),
            min_vec.size());
      }

W
wenbin 已提交
300
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
301
    }
302 303 304 305 306 307
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
308
    }
309
  }
310
#if IS_TRT_VERSION_GE(8200)
311 312 313 314
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
315 316
#endif

317
#if IS_TRT_VERSION_LT(8000)
318 319
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
320
#else
J
JingZhuangzhuang 已提交
321
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
322
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
323 324
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
325 326
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
327
#endif
328

329
  PADDLE_ENFORCE_NOT_NULL(
330 331 332 333
      infer_engine_,
      platform::errors::Fatal(
          "Build TensorRT cuda engine failed! Please recheck "
          "you configurations related to paddle-TensorRT."));
334

W
wenbin 已提交
335 336 337 338 339 340
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }
341 342 343 344 345 346
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
347 348 349
  if (use_inspector_) {
    GetEngineInfo();
  }
Y
Yan Chunwei 已提交
350 351
}

352
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
353
                                                nvinfer1::DataType dtype,
354
                                                const nvinfer1::Dims &dims) {
355 356
  PADDLE_ENFORCE_EQ(network() != nullptr,
                    true,
357 358 359
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
360
  PADDLE_ENFORCE_NOT_NULL(
361 362 363 364 365 366 367
      input,
      platform::errors::InvalidArgument("Adding input %s failed in "
                                        "TensorRT inference network. "
                                        "Please recheck your input.",
                                        name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(),
                    true,
368 369 370 371
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
372
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
373 374 375
  return input;
}

376 377
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer,
                                   int offset,
378 379
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
380
  SetITensor(name, output);
381
  PADDLE_ENFORCE_NOT_NULL(
382 383 384
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
385
  output->setName(name.c_str());
386 387
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
388 389 390 391
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
392
  network()->markOutput(*output);
393
  PADDLE_ENFORCE_EQ(
394 395
      output->isNetworkOutput(),
      true,
396 397 398
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
399 400
}

401 402
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
403
  PADDLE_ENFORCE_NOT_NULL(
404 405 406
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
407
  output->setName(name.c_str());
408 409
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
410 411 412 413
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
414
  network()->markOutput(*output);
L
Luo Tao 已提交
415
}
416 417 418 419 420 421 422 423

void TensorRTEngine::DeclareOutput(const std::string &name,
                                   nvinfer1::DataType dtype) {
  auto *output = TensorRTEngine::GetITensor(name);
  DeclareOutput(name);
  output->setType(dtype);
}

424 425 426 427 428 429 430 431 432 433 434 435 436
void TensorRTEngine::DeleteITensor(const std::string &name,
                                   nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE_NOT_NULL(
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      true,
      itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null", name));
  itensor_map_.erase(name);
}
L
Luo Tao 已提交
437

438 439
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
440
  PADDLE_ENFORCE_NOT_NULL(
441 442 443
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
444
  PADDLE_ENFORCE_EQ(
445 446
      0,
      itensor_map_.count(name),
447 448
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
449 450 451
  itensor_map_[name] = tensor;
}

452 453 454 455 456
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name,
                                              bool scalar) {
  if (scalar) {
    return ConvertWeight2ITensor(name, true);
  }
457 458 459 460 461 462 463 464 465 466 467
  if (itensor_map_.count(name)) {
    return itensor_map_[name];
  } else {
    ConvertWeight2ITensor(name);
    return itensor_map_[name];
  }
}

// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
468
    const std::string &name, bool scalar) {
469 470 471 472 473 474 475
  auto *var_v = scope_->FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(
      var_v,
      platform::errors::NotFound("You are converting a persistable weight to a "
                                 "tensor, but there is no "
                                 "persistable variable called %s in scope.",
                                 name));
476
  auto *var_t = var_v->GetMutable<phi::DenseTensor>();
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
  auto weight = this->GetTrtWeight(name, *var_t);

  // Now we have create weights, then we need create a itensor
  auto var_dims = var_t->dims();
  nvinfer1::Dims trt_in_shape;
  trt_in_shape.nbDims = var_t->dims().size();
  for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
    trt_in_shape.d[i] = var_dims[i];
  }
  // In fact , this is not always right, because we can't determine if the 0th
  // dimension is batch. Just for run chenqu's model
  if (!this->with_dynamic_shape()) {
    trt_in_shape.nbDims--;
    for (int i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = trt_in_shape.d[i + 1];
    }
  }
494 495 496 497
  if (scalar) {
    trt_in_shape.nbDims = 0;
    trt_in_shape.d[0] = var_dims[0];
  }
498 499
  nvinfer1::ILayer *layer =
      TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
500 501 502
  if (!scalar) {
    this->SetITensor(name, layer->getOutput(0));
  }
503
  return layer->getOutput(0);
L
Luo Tao 已提交
504 505
}

506 507 508 509 510
std::unordered_map<std::string, nvinfer1::ITensor *>
    *TensorRTEngine::GetITensorMap() {
  return &itensor_map_;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
void TensorRTEngine::Deserialize(const std::string &engine_serialized_data) {
  freshDeviceId();
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));

  if (use_dla_) {
    if (precision_ != AnalysisConfig::Precision::kInt8 &&
        precision_ != AnalysisConfig::Precision::kHalf) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (runtime->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << runtime->getNbDLACores() << ", but got " << dla_core_
                     << ", so use use 0 as default.";
      }
      runtime->setDLACore(dla_core_);
      LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                << dla_core_;
    }
  }

  infer_engine_.reset(runtime->deserializeCudaEngine(
      engine_serialized_data.c_str(), engine_serialized_data.size()));

  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_,
      platform::errors::Fatal(
          "Building TRT cuda engine failed when deserializing engine info. "
          "Please check:\n1. Your TRT serialization is generated and loaded "
          "on the same GPU architecture;\n2. The Paddle Inference version of "
          "generating serialization file and doing inference are "
          "consistent."));

  binding_num_ = infer_engine_->getNbBindings();
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
556 557 558
  if (use_inspector_) {
    GetEngineInfo();
  }
559 560
}

561 562 563 564
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

565 566
// Note: Only for support plugin.
TensorRTEngine::Weight TensorRTEngine::GetFp16TrtWeight(
567
    const std::string &name, const phi::DenseTensor &weight_tensor) {
568 569 570 571 572 573 574 575 576 577 578
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
579
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
580 581 582 583 584
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

Y
Yuanle Liu 已提交
585
  // if trt not support dtype, we need to cast to fp16.
586
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
587
    phi::DenseTensor bf16_tensor;
588 589 590 591 592 593 594 595 596 597 598
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(bf16_data[i]);
    }
Y
Yuanle Liu 已提交
599 600
    weight.SetDataType(phi::DataType::FLOAT16);
    weight.SetValues(fp16_data);
601
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT32) {
602
    phi::DenseTensor fp32_tensor;
603 604 605 606 607 608 609 610 611 612 613
    fp32_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp32_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *fp32_data = fp32_tensor.mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(fp32_data[i]);
    }
Y
Yuanle Liu 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    weight.SetDataType(phi::DataType::FLOAT16);
    weight.SetValues(fp16_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
    phi::DenseTensor int64_tensor;
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::INT32);
    weight.SetValues(int32_data);
631 632 633
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
Y
Yuanle Liu 已提交
634 635
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
636 637 638 639 640 641
  }
  name_suffix_counter += 1;
  return weight;
}

// Note: Only for support plugin.
642
TensorRTEngine::Weight TensorRTEngine::GetFp32TrtWeight(
643
    const std::string &name, const phi::DenseTensor &weight_tensor) {
644 645 646 647
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
648
  platform::CPUPlace cpu_place;
649 650 651 652 653 654
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
655
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
656 657 658 659 660
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

Y
Yuanle Liu 已提交
661
  // if trt not support dtype, we need to cast to fp32.
662
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
663
    phi::DenseTensor bf16_tensor;
664 665 666 667 668 669 670 671 672 673 674
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
Y
Yuanle Liu 已提交
675 676
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
677
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT16) {
678
    phi::DenseTensor fp16_tensor;
679 680 681 682 683 684 685 686 687 688 689
    fp16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *fp16_data = fp16_tensor.mutable_data<float16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(fp16_data[i]);
    }
Y
Yuanle Liu 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
    phi::DenseTensor int64_tensor;
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::INT32);
    weight.SetValues(int32_data);
707 708 709
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
Y
Yuanle Liu 已提交
710 711
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
712 713 714
  }
  name_suffix_counter += 1;
  return weight;
715 716
}

717
TensorRTEngine::Weight TensorRTEngine::GetTrtWeight(
718
    const std::string &name, const phi::DenseTensor &weight_tensor) {
719 720 721 722 723 724 725 726 727 728 729 730
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));

731 732 733 734 735
  if (weight_tensor.place() == PlaceType::kGPU ||
      weight_tensor.dtype() != phi::DataType::FLOAT32) {
    weight_map[name_with_suffix].reset(new phi::DenseTensor());
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
  }
736 737 738 739 740 741

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

  // if trt not support dtype, we need to cast to fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
742
    phi::DenseTensor bf16_tensor;
743 744 745 746 747 748 749 750 751 752 753 754 755 756
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
757
    phi::DenseTensor int64_tensor;
758 759 760 761 762
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
Y
Yuanle Liu 已提交
763 764
    auto *int32_data = weight_map[name_with_suffix]->mutable_data<int32_t>(
        platform::CPUPlace());
765 766 767 768
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
Z
zhoutianzi666 已提交
769
    weight.SetDataType(phi::DataType::INT32);
770 771
    weight.SetValues(int32_data);
  } else {
772 773 774 775 776 777 778 779 780
    if (weight_tensor.place() == PlaceType::kGPU) {
      paddle::framework::TensorCopySync(
          weight_tensor, cpu_place, weight_map[name_with_suffix].get());
      weight.SetDataType(weight_tensor.dtype());
      weight.SetValues(weight_map[name_with_suffix]->data());
    } else {
      weight.SetDataType(weight_tensor.dtype());
      weight.SetValues(weight_tensor.data());
    }
781
  }
782

783 784 785
  name_suffix_counter += 1;
  return weight;
}
786

787 788
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

789
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
790 791
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
792
    plugin::PluginTensorRT *plugin) {
793
  owned_plugin_.emplace_back(plugin);
794
  return network()->addPluginV2(inputs, num_inputs, *plugin);
795 796
}

797
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
798 799
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
800 801 802 803 804
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

805
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
806 807
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
808 809 810 811 812
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
813 814 815
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
816 817
  PADDLE_ENFORCE_LT(device_id_,
                    count,
818 819
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
820 821
                        device_id_,
                        count));
L
Leo Chen 已提交
822
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
823 824
}

825 826 827 828 829
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
830 831
  auto *infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
832
  LOG(INFO) << infer_inspector->getEngineInformation(
833
      nvinfer1::LayerInformationFormat::kJSON);
834 835 836 837 838 839
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
840 841 842
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle