engine.cc 30.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
19

A
Abhinav Arora 已提交
20
#include <string>
W
wanghuancoder 已提交
21

22
#include "NvInferRuntimeCommon.h"
23
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/phi/common/data_type.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

33 34 35
int TensorRTEngine::runtime_batch_ = 1;
thread_local int TensorRTEngine::predictor_id_per_thread = -1;

36
void TensorRTEngine::Weight::SetDataType(phi::DataType type) {
37
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "Paddle-TRT loads weighths failed, found not supported data type %s.",
          type);
      break;
  }
  w_.type = nv_type;
}

65 66 67 68 69
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
70
    infer_network_.reset(infer_builder_->createNetworkV2(
71 72 73
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
74
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
75
  }
76 77

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
78 79 80 81
  // optim_profile_ = infer_builder_->createOptimizationProfile();
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
82 83
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
nvinfer1::IExecutionContext *TensorRTEngine::context() {
  std::unique_lock<std::mutex> lock(mutex_);
  if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    // We may see trt warning: Profile 0 has been chosen by another
    // IExecutionContext...
    // It's ok. We will set it later.
    nvinfer1::IExecutionContext *infer_context{nullptr};
    if (context_memory_sharing_) {
      infer_context =
          infer_engine_->createExecutionContextWithoutDeviceMemory();
    } else {
      infer_context = infer_engine_->createExecutionContext();
    }
    PADDLE_ENFORCE_NOT_NULL(
        infer_context,
        platform::errors::InvalidArgument(
            "TensorRT engine can not build execution context."));
    if (with_dynamic_shape_) {
      // need new profile if it's not the first
      if (cur_profile_num_ > 0) {
        infer_context->setOptimizationProfile(cur_profile_num_);
      }
      profile_index_[predictor_id_per_thread] = cur_profile_num_;
      ++cur_profile_num_;
    }
    infer_context_[predictor_id_per_thread].reset(infer_context);
  }
  return infer_context_[predictor_id_per_thread].get();
}

118 119
void TensorRTEngine::Execute(int batch_size,
                             std::vector<void *> *buffers,
120
                             cudaStream_t stream) {
N
nhzlx 已提交
121
  freshDeviceId();
122
  auto infer_context = context();
123 124 125 126 127 128 129 130 131 132
  if (context_memory_sharing_) {
    void *context_memory{nullptr};
    context_memory =
        inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
            .getContextMemory(
                predictor_id_per_thread,
                phi::GPUPlace(device_id_),
                phi::Stream(reinterpret_cast<phi::StreamId>(stream)));
    infer_context->setDeviceMemory(context_memory);
  }
133 134 135 136
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
137
  }
N
nhzlx 已提交
138 139 140
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
141
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
142
  freshDeviceId();
143
  VLOG(3) << "TRT to freeze network";
144 145 146 147 148 149 150
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
151 152
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
153 154 155 156
#if IS_TRT_VERSION_GE(8300)
  infer_builder_config_->setMemoryPoolLimit(
      nvinfer1::MemoryPoolType::kWORKSPACE, max_workspace_);
#else
157
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
158
#endif
Z
Zhaolong Xing 已提交
159 160 161
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
162
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
163 164 165
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
166 167
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
168 169 170
    }
  }

171
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
172
  if (enable_int8) {
C
csy0225 已提交
173 174 175
    if (!use_dla_) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
176 177
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

178
    if (calibrator_) {
179
      infer_builder_config_->setInt8Calibrator(calibrator_);
180
    } else {
181
      infer_builder_config_->setInt8Calibrator(nullptr);
182 183 184 185 186 187 188 189

      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
190 191
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
192 193 194 195
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
196

197 198
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
199 200 201 202
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
203 204 205
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
206 207 208
        }
      }
    }
N
nhzlx 已提交
209
  }
Y
Yan Chunwei 已提交
210

211 212 213 214 215 216 217 218 219 220 221 222
  // If model is mixed precision, then we should cast all float output to
  // float32 precision. Otherwise, we can not confirm the output precision of
  // the trt engine.
  if (model_precision_ != phi::DataType::FLOAT32) {
    for (int i = 0; i < network()->getNbOutputs(); ++i) {
      network()->getOutput(i)->setAllowedFormats(
          static_cast<nvinfer1::TensorFormats>(
              1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR)));
      network()->getOutput(i)->setType(nvinfer1::DataType::kFLOAT);
    }
  }

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
238 239 240
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
241 242 243 244 245
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

246
  if (with_dynamic_shape_) {
247
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
248 249
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
250
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
251
        // trt6 will check all_of input > 0
252 253
        if (!(std::all_of(input.second.begin(),
                          input.second.end(),
W
wenbin 已提交
254 255 256 257 258 259 260 261 262
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
263
#endif
W
wenbin 已提交
264 265 266 267 268 269
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
270 271
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMIN,
W
wenbin 已提交
272 273
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
274 275
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMAX,
W
wenbin 已提交
276 277
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
278 279
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kOPT,
W
wenbin 已提交
280 281
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

      for (int input_id = 0; input_id < network()->getNbInputs(); input_id++) {
        auto input_name = network()->getInput(input_id)->getName();
        if (!itensor_map_.count(input_name)) continue;
        if (!GetITensor(input_name)->isShapeTensor()) continue;
        PADDLE_ENFORCE_EQ(min_shape_tensor_.count(input_name) &&
                              max_shape_tensor_.count(input_name) &&
                              optim_shape_tensor_.count(input_name),
                          true,
                          platform::errors::InvalidArgument(
                              "Fail to find min/max/optim shape value for TRT "
                              "network's shape tensor input named %s.",
                              input_name));
        auto min_vec = min_shape_tensor_.at(input_name);
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMIN,
                                           min_vec.data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMAX,
                                           max_shape_tensor_[input_name].data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(
            input_name,
            nvinfer1::OptProfileSelector::kOPT,
            optim_shape_tensor_[input_name].data(),
            min_vec.size());
      }

W
wenbin 已提交
311
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
312
    }
313 314 315 316 317 318
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
319
    }
320
  }
321
#if IS_TRT_VERSION_GE(8200)
322 323 324 325
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
326 327
#endif

328
#if IS_TRT_VERSION_LT(8000)
329 330
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
331
#else
J
JingZhuangzhuang 已提交
332
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
333
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
334 335
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
336 337
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
338
#endif
339

340
  PADDLE_ENFORCE_NOT_NULL(
341 342 343 344
      infer_engine_,
      platform::errors::Fatal(
          "Build TensorRT cuda engine failed! Please recheck "
          "you configurations related to paddle-TensorRT."));
345

W
wenbin 已提交
346 347 348 349 350 351
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }
352 353 354 355 356 357
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
W
wenbin 已提交
358

359
  GetEngineInfo();
Y
Yan Chunwei 已提交
360 361
}

362
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
363
                                                nvinfer1::DataType dtype,
364
                                                const nvinfer1::Dims &dims) {
365 366
  PADDLE_ENFORCE_EQ(network() != nullptr,
                    true,
367 368 369
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
370
  PADDLE_ENFORCE_NOT_NULL(
371 372 373 374 375 376 377
      input,
      platform::errors::InvalidArgument("Adding input %s failed in "
                                        "TensorRT inference network. "
                                        "Please recheck your input.",
                                        name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(),
                    true,
378 379 380 381
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
382
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
383 384 385
  return input;
}

386 387
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer,
                                   int offset,
388 389
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
390
  SetITensor(name, output);
391
  PADDLE_ENFORCE_NOT_NULL(
392 393 394
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
395
  output->setName(name.c_str());
396 397
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
398 399 400 401
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
402
  network()->markOutput(*output);
403
  PADDLE_ENFORCE_EQ(
404 405
      output->isNetworkOutput(),
      true,
406 407 408
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
409 410
}

411 412
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
413
  PADDLE_ENFORCE_NOT_NULL(
414 415 416
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
417
  output->setName(name.c_str());
418 419
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
420 421 422 423
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
424
  network()->markOutput(*output);
L
Luo Tao 已提交
425
}
426 427 428 429 430 431 432 433 434 435 436 437 438
void TensorRTEngine::DeleteITensor(const std::string &name,
                                   nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE_NOT_NULL(
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      true,
      itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null", name));
  itensor_map_.erase(name);
}
L
Luo Tao 已提交
439

440 441
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
442
  PADDLE_ENFORCE_NOT_NULL(
443 444 445
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
446
  PADDLE_ENFORCE_EQ(
447 448
      0,
      itensor_map_.count(name),
449 450
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
451 452 453
  itensor_map_[name] = tensor;
}

454 455 456 457 458
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name,
                                              bool scalar) {
  if (scalar) {
    return ConvertWeight2ITensor(name, true);
  }
459 460 461 462 463 464 465 466 467 468 469
  if (itensor_map_.count(name)) {
    return itensor_map_[name];
  } else {
    ConvertWeight2ITensor(name);
    return itensor_map_[name];
  }
}

// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
470
    const std::string &name, bool scalar) {
471 472 473 474 475 476 477
  auto *var_v = scope_->FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(
      var_v,
      platform::errors::NotFound("You are converting a persistable weight to a "
                                 "tensor, but there is no "
                                 "persistable variable called %s in scope.",
                                 name));
478
  auto *var_t = var_v->GetMutable<phi::DenseTensor>();
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  auto weight = this->GetTrtWeight(name, *var_t);

  // Now we have create weights, then we need create a itensor
  auto var_dims = var_t->dims();
  nvinfer1::Dims trt_in_shape;
  trt_in_shape.nbDims = var_t->dims().size();
  for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
    trt_in_shape.d[i] = var_dims[i];
  }
  // In fact , this is not always right, because we can't determine if the 0th
  // dimension is batch. Just for run chenqu's model
  if (!this->with_dynamic_shape()) {
    trt_in_shape.nbDims--;
    for (int i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = trt_in_shape.d[i + 1];
    }
  }
496 497 498 499
  if (scalar) {
    trt_in_shape.nbDims = 0;
    trt_in_shape.d[0] = var_dims[0];
  }
500 501
  nvinfer1::ILayer *layer =
      TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
502 503 504
  if (!scalar) {
    this->SetITensor(name, layer->getOutput(0));
  }
505
  return layer->getOutput(0);
L
Luo Tao 已提交
506 507
}

508 509 510 511 512
std::unordered_map<std::string, nvinfer1::ITensor *>
    *TensorRTEngine::GetITensorMap() {
  return &itensor_map_;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
void TensorRTEngine::Deserialize(const std::string &engine_serialized_data) {
  freshDeviceId();
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));

  if (use_dla_) {
    if (precision_ != AnalysisConfig::Precision::kInt8 &&
        precision_ != AnalysisConfig::Precision::kHalf) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (runtime->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << runtime->getNbDLACores() << ", but got " << dla_core_
                     << ", so use use 0 as default.";
      }
      runtime->setDLACore(dla_core_);
      LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                << dla_core_;
    }
  }

  infer_engine_.reset(runtime->deserializeCudaEngine(
      engine_serialized_data.c_str(), engine_serialized_data.size()));

  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_,
      platform::errors::Fatal(
          "Building TRT cuda engine failed when deserializing engine info. "
          "Please check:\n1. Your TRT serialization is generated and loaded "
          "on the same GPU architecture;\n2. The Paddle Inference version of "
          "generating serialization file and doing inference are "
          "consistent."));

  binding_num_ = infer_engine_->getNbBindings();
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }

  GetEngineInfo();
}

562 563 564 565
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

566 567
// Note: Only for support plugin.
TensorRTEngine::Weight TensorRTEngine::GetFp16TrtWeight(
568
    const std::string &name, const phi::DenseTensor &weight_tensor) {
569 570 571 572 573 574 575 576 577 578 579
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
580
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
581 582 583 584 585 586 587 588 589
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());
  weight.SetDataType(nvinfer1::DataType::kHALF);
  // weight_tensor.dims().;

  // if trt not support dtype, we need to cast to  fp16.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
590
    phi::DenseTensor bf16_tensor;
591 592 593 594 595 596 597 598 599 600 601 602 603
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(bf16_data[i]);
    }
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT32) {
604
    phi::DenseTensor fp32_tensor;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    fp32_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp32_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *fp32_data = fp32_tensor.mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(fp32_data[i]);
    }
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  }
  weight.SetValues(weight_map[name_with_suffix]->data());
  name_suffix_counter += 1;
  return weight;
}

// Note: Only for support plugin.
627
TensorRTEngine::Weight TensorRTEngine::GetFp32TrtWeight(
628
    const std::string &name, const phi::DenseTensor &weight_tensor) {
629 630 631 632
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
633
  platform::CPUPlace cpu_place;
634 635 636 637 638 639
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
640
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
641 642 643 644 645 646 647 648 649
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());
  weight.SetDataType(nvinfer1::DataType::kFLOAT);
  // weight_tensor.dims().;

  // if trt not support dtype, we need to cast to  fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
650
    phi::DenseTensor bf16_tensor;
651 652 653 654 655 656 657 658 659 660 661 662 663
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT16) {
664
    phi::DenseTensor fp16_tensor;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    fp16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *fp16_data = fp16_tensor.mutable_data<float16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(fp16_data[i]);
    }
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  }
  weight.SetValues(weight_map[name_with_suffix]->data());
  name_suffix_counter += 1;
  return weight;
684 685
}

686
TensorRTEngine::Weight TensorRTEngine::GetTrtWeight(
687
    const std::string &name, const phi::DenseTensor &weight_tensor) {
688 689 690 691 692 693 694 695 696 697 698 699
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));

700
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
701 702 703 704 705 706 707
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

  // if trt not support dtype, we need to cast to fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
708
    phi::DenseTensor bf16_tensor;
709 710 711 712 713 714 715 716 717 718 719 720 721 722
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
723
    phi::DenseTensor int64_tensor;
724 725 726 727 728 729 730 731 732 733 734
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
    auto *int32_data =
        weight_map[name_with_suffix]->mutable_data<int>(platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
Z
zhoutianzi666 已提交
735
    weight.SetDataType(phi::DataType::INT32);
736 737 738 739 740 741 742
    weight.SetValues(int32_data);
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
  }
743

744 745 746
  name_suffix_counter += 1;
  return weight;
}
747

748 749
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

750
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
751 752
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
753
    plugin::PluginTensorRT *plugin) {
754
  owned_plugin_.emplace_back(plugin);
755
  return network()->addPluginV2(inputs, num_inputs, *plugin);
756 757
}

758
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
759 760
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
761 762 763 764 765
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

766
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
767 768
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
769 770 771 772 773
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
774 775 776
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
777 778
  PADDLE_ENFORCE_LT(device_id_,
                    count,
779 780
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
781 782
                        device_id_,
                        count));
L
Leo Chen 已提交
783
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
784 785
}

786 787 788 789 790
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
791 792
  auto *infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
793 794 795 796 797 798 799 800
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
801 802 803
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle