Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1a6ce8b9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1a6ce8b9
编写于
4月 01, 2020
作者:
Z
Zhaolong Xing
提交者:
GitHub
4月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add swish split gelu plugin dynamic support (#23305)
test=develop
上级
2bb1b0e8
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
691 addition
and
91 deletion
+691
-91
paddle/fluid/inference/tensorrt/convert/gelu_op.cc
paddle/fluid/inference/tensorrt/convert/gelu_op.cc
+17
-8
paddle/fluid/inference/tensorrt/convert/split_op.cc
paddle/fluid/inference/tensorrt/convert/split_op.cc
+40
-8
paddle/fluid/inference/tensorrt/convert/swish_op.cc
paddle/fluid/inference/tensorrt/convert/swish_op.cc
+14
-4
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+1
-0
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.cu
+162
-17
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h
+65
-21
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
+138
-0
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
+64
-9
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu
+113
-4
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h
+58
-7
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+2
-2
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
+17
-11
未找到文件。
paddle/fluid/inference/tensorrt/convert/gelu_op.cc
浏览文件 @
1a6ce8b9
...
...
@@ -19,6 +19,9 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
/*
* Gelu converter from fluid to tensorRT.
*/
/*
* Gelu converter from fluid to tensorRT.
*/
...
...
@@ -40,15 +43,21 @@ class GeluOpConverter : public OpConverter {
PADDLE_ENFORCE_EQ
(
output_num
,
1
,
platform
::
errors
::
InvalidArgument
(
"gelu op has only 1 output, but got %d"
,
output_num
));
// Get input shape and volume
nvinfer1
::
Dims
input_shape
=
input
->
getDimensions
();
size_t
input_volume
=
1
;
for
(
int
i
=
0
;
i
<
input_shape
.
nbDims
;
i
++
)
{
input_volume
*=
input_shape
.
d
[
i
];
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
GeluPluginDynamic
*
plugin
=
new
plugin
::
GeluPluginDynamic
();
layer
=
engine_
->
AddPluginV2
(
&
input
,
input_num
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
GeluPlugin
*
plugin
=
new
plugin
::
GeluPlugin
();
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
}
plugin
::
GeluPlugin
*
plugin
=
new
plugin
::
GeluPlugin
(
input_volume
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"gelu"
,
{
output_name
},
test_mode
);
}
...
...
paddle/fluid/inference/tensorrt/convert/split_op.cc
浏览文件 @
1a6ce8b9
...
...
@@ -37,25 +37,57 @@ class SplitOpConverter : public OpConverter {
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
// split on batch is not supported in TensorRT
PADDLE_ENFORCE
(
axis
!=
0
);
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
std
::
vector
<
int
>
output_lengths
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"sections"
));
output_lengths
.
reserve
(
output_num
);
int
num
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"num"
));
int
num
=
0
;
if
(
op_desc
.
HasAttr
(
"num"
))
{
num
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"num"
));
}
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
0
;
#endif
}
else
{
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
}
PADDLE_ENFORCE_NE
(
input_dims
.
d
[
axis
],
-
1
,
platform
::
errors
::
InvalidArgument
(
"The (%d) dim of input should not be -1"
,
axis
));
if
(
num
>
0
)
{
int64_t
in_axis_dim
=
input_dims
.
d
[
axis
];
PADDLE_ENFORCE_EQ
(
in_axis_dim
%
num
,
0
,
"Tensor split does not result"
" in an equal division"
);
size_t
out_axis_dim
=
in_axis_dim
/
num
;
for
(
size_t
i
=
0
;
i
<
output_
num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
output_lengths
.
push_back
(
out_axis_dim
);
}
}
PADDLE_ENFORCE
(
output_lengths
.
size
()
==
output_num
);
plugin
::
SplitPlugin
*
plugin
=
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
PADDLE_ENFORCE_EQ
(
output_lengths
.
size
(),
output_num
,
platform
::
errors
::
InvalidArgument
(
"The output_length should be equal to the output size."
));
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
SplitPluginDynamic
*
plugin
=
new
plugin
::
SplitPluginDynamic
(
axis
,
output_lengths
);
layer
=
engine_
->
AddPluginV2
(
&
input
,
input_num
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
SplitPlugin
*
plugin
=
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
);
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
}
std
::
string
layer_name
=
"split (Output: "
;
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
...
...
paddle/fluid/inference/tensorrt/convert/swish_op.cc
浏览文件 @
1a6ce8b9
...
...
@@ -36,10 +36,20 @@ class SwishOpConverter : public OpConverter {
// Get attrs
float
beta
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"beta"
));
plugin
::
SwishPlugin
*
plugin
=
new
plugin
::
SwishPlugin
(
beta
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
SwishPluginDynamic
*
plugin
=
new
plugin
::
SwishPluginDynamic
(
beta
);
layer
=
engine_
->
AddPluginV2
(
&
input
,
input_num
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
SwishPlugin
*
plugin
=
new
plugin
::
SwishPlugin
(
beta
);
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"swish"
,
{
output_name
},
test_mode
);
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
1a6ce8b9
...
...
@@ -148,6 +148,7 @@ void TensorRTEngine::FreezeNetwork() {
if
(
with_dynamic_shape_
)
{
#if IS_TRT_VERSION_GE(6000)
LOG
(
INFO
)
<<
"Run Paddle-TRT Dynamic Shape mode."
;
for
(
auto
&
input
:
min_input_shape_
)
{
optim_profile_
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kMIN
,
...
...
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.cu
浏览文件 @
1a6ce8b9
...
...
@@ -24,12 +24,29 @@ namespace tensorrt {
namespace
plugin
{
// constants for approximating the normal cdf
constexpr
float
A
=
1.41421356237309504
;
// sqrt(2)
static
const
float
kA
=
1.41421356237309504
;
// sqrt(2)
static
const
float
kAT
=
0.5
;
static
const
float
kBT
=
0.7978845608028654
;
// sqrt(2.0/M_PI)
static
const
float
kCT
=
0.035677408136300125
;
// 0.044715 * sqrt(2.0/M_PI)
GeluPlugin
*
CreateGeluPluginDeserialize
(
const
void
*
buffer
,
size_t
length
)
{
return
new
GeluPlugin
(
buffer
,
length
);
}
REGISTER_TRT_PLUGIN
(
"gelu plugin"
,
CreateGeluPluginDeserialize
);
REGISTER_TRT_PLUGIN
(
"gelu_plugin"
,
CreateGeluPluginDeserialize
);
bool
GeluPlugin
::
supportsFormat
(
nvinfer1
::
DataType
type
,
nvinfer1
::
PluginFormat
format
)
const
{
#ifdef SUPPORTS_CUDA_FP16
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
||
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
format
==
nvinfer1
::
PluginFormat
::
kNCHW
));
#else
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
format
==
nvinfer1
::
PluginFormat
::
kNCHW
));
#endif
}
nvinfer1
::
Dims
GeluPlugin
::
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
in_dims
,
...
...
@@ -42,7 +59,7 @@ nvinfer1::Dims GeluPlugin::getOutputDimensions(int index,
}
template
<
typename
T
,
unsigned
TPB
>
__global__
void
gelu
K
ernel
(
const
T
a
,
int
n
,
const
T
*
input
,
T
*
output
)
{
__global__
void
gelu
_k
ernel
(
const
T
a
,
int
n
,
const
T
*
input
,
T
*
output
)
{
const
int
idx
=
blockIdx
.
x
*
TPB
+
threadIdx
.
x
;
if
(
idx
<
n
)
{
const
T
in
=
input
[
idx
];
...
...
@@ -51,24 +68,152 @@ __global__ void geluKernel(const T a, int n, const T* input, T* output) {
}
}
int
computeGelu
(
cudaStream_t
stream
,
int
n
,
const
float
*
input
,
float
*
output
)
{
constexpr
int
blockSize
=
256
;
const
int
gridSize
=
(
n
+
blockSize
-
1
)
/
blockSize
;
geluKernel
<
float
,
blockSize
><<<
gridSize
,
blockSize
,
0
,
stream
>>>
(
A
,
n
,
input
,
output
);
cudaError_t
error
=
cudaGetLastError
();
if
(
error
!=
cudaSuccess
)
LOG
(
ERROR
)
<<
cudaGetErrorString
(
error
);
return
0
;
template
<
typename
T
>
__device__
T
do_tanh
(
T
a
);
template
<
>
__device__
float
do_tanh
<
float
>
(
float
a
)
{
return
tanf
(
a
);
}
int
GeluPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
template
<
>
__device__
half
do_tanh
<
half
>
(
half
a
)
{
const
float
tmp
=
tanhf
(
__half2float
(
a
));
return
__float2half
(
tmp
);
}
// the kernel below is not aligned with fluid fp32 forwrad ones, use it for
// fp16.
template
<
typename
T
,
unsigned
TPB
>
__global__
void
no_exact_gelu_kernel
(
const
T
a
,
const
T
b
,
const
T
c
,
int
n
,
const
T
*
input
,
T
*
output
)
{
const
int
idx
=
blockIdx
.
x
*
TPB
+
threadIdx
.
x
;
if
(
idx
<
n
)
{
const
T
in
=
input
[
idx
];
const
T
tmp
=
in
*
(
c
*
in
*
in
+
b
);
const
T
cdf
=
a
+
a
*
do_tanh
<
T
>
(
tmp
);
output
[
idx
]
=
in
*
cdf
;
}
}
int
GeluPlugin
::
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
,
cudaStream_t
stream
)
{
int
status
=
-
1
;
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
status
=
computeGelu
(
stream
,
input_volume_
*
batchSize
,
input
,
output
);
return
status
;
const
auto
&
input_dims
=
this
->
getInputDims
(
0
);
int
num
=
batch_size
;
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
num
*=
input_dims
.
d
[
i
];
}
const
int
block_size
=
256
;
const
int
grid_size
=
(
num
+
block_size
-
1
)
/
block_size
;
auto
type
=
getDataType
();
if
(
type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
gelu_kernel
<
float
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kA
,
num
,
input
,
output
);
}
else
if
(
type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
const
half
*
input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
no_exact_gelu_kernel
<
half
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kAT
,
kBT
,
kCT
,
num
,
input
,
output
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The Gelu TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
size_t
GeluPluginDynamic
::
getSerializationSize
()
const
{
return
0
;
}
void
GeluPluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
GeluPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
return
inputs
[
0
];
}
bool
GeluPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
#ifdef SUPPORTS_CUDA_FP16
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
GeluPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The Gelu Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
int
GeluPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
size_t
num
=
ProductDim
(
input_dims
);
const
int
block_size
=
256
;
const
int
grid_size
=
(
num
+
block_size
-
1
)
/
block_size
;
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
gelu_kernel
<
float
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kA
,
num
,
input
,
output
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
const
half
*
input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
no_exact_gelu_kernel
<
half
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kAT
,
kBT
,
kCT
,
num
,
input
,
output
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The Gelu TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h
浏览文件 @
1a6ce8b9
...
...
@@ -25,46 +25,90 @@ namespace tensorrt {
namespace
plugin
{
class
GeluPlugin
:
public
PluginTensorRT
{
public:
GeluPlugin
()
{}
// It was used for tensorrt deserialization.
// It should not be called by users.
GeluPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
}
~
GeluPlugin
()
{}
GeluPlugin
*
clone
()
const
override
{
return
new
GeluPlugin
();
}
const
char
*
getPluginType
()
const
override
{
return
"gelu_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
{
return
0
;
}
bool
supportsFormat
(
nvinfer1
::
DataType
type
,
nvinfer1
::
PluginFormat
format
)
const
override
;
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
protected:
size_t
getSerializationSize
()
override
{
return
getBaseSerializationSize
()
+
SerializedSize
(
getPluginType
())
+
SerializedSize
(
input_volume_
);
return
getBaseSerializationSize
()
+
SerializedSize
(
getPluginType
());
}
// TRT will call this func to serialize the configuration of TRT
// It should not be called by users.
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
input_volume_
);
}
};
#if IS_TRT_VERSION_GE(6000)
class
GeluPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
explicit
GeluPlugin
(
size_t
input_volume
)
:
input_volume_
(
input_volume
)
{}
GeluPluginDynamic
()
{}
GeluPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{}
// It was used for tensorrt deserialization.
// It should not be called by users.
GeluPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
input_volume_
);
~
GeluPluginDynamic
()
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
GeluPluginDynamic
();
}
~
GeluPlugin
()
{
}
const
char
*
getPluginType
()
const
override
{
return
"gelu_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
{
return
0
;
}
GeluPlugin
*
clone
()
const
override
{
return
new
GeluPlugin
(
input_volume_
);
}
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
const
char
*
getPluginType
()
const
override
{
return
"gelu_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
outputIndex
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nbInputs
,
nvinfer1
::
IExprBuilder
&
exprBuilder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
private:
size_t
input_volume_
;
void
destroy
()
override
{
delete
this
;
}
};
#endif
}
// namespace plugin
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
浏览文件 @
1a6ce8b9
...
...
@@ -128,6 +128,144 @@ int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
return
cudaGetLastError
()
!=
cudaSuccess
;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int
SplitPluginDynamic
::
initialize
()
{
return
0
;
}
size_t
SplitPluginDynamic
::
getSerializationSize
()
const
{
return
0
;
}
void
SplitPluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
SplitPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
PADDLE_ENFORCE_EQ
(
nb_inputs
,
1
,
platform
::
errors
::
InvalidArgument
(
"The Split plugin should be only one input."
));
PADDLE_ENFORCE_LT
(
output_index
,
output_length_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"When GetOutputDimensions, the index(%d) should not "
"greater the num(%d) of the outpus."
,
output_index
,
output_length_
.
size
()));
nvinfer1
::
DimsExprs
output_dims
=
inputs
[
0
];
output_dims
.
d
[
axis_
]
=
expr_builder
.
constant
(
output_length_
.
at
(
output_index
));
return
output_dims
;
}
bool
SplitPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
#ifdef SUPPORTS_CUDA_FP16
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
SplitPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
return
input_types
[
0
];
}
int
SplitPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
int
outer_rows
=
1
;
int
inner_cols
=
1
;
// with batch
for
(
int
i
=
0
;
i
<
axis_
;
i
++
)
{
outer_rows
*=
input_dims
.
d
[
i
];
}
for
(
int
i
=
axis_
+
1
;
i
<
input_dims
.
nbDims
;
i
++
)
{
inner_cols
*=
input_dims
.
d
[
i
];
}
std
::
vector
<
int
>
segment_offsets
(
1
,
0
);
for
(
int
i
=
0
;
i
<
this
->
getNbOutputs
();
i
++
)
{
segment_offsets
.
push_back
(
segment_offsets
.
back
()
+
output_length_
[
i
]);
}
int
axis_shape
=
input_dims
.
d
[
axis_
];
thrust
::
device_vector
<
int
>
d_segment_offsets
=
segment_offsets
;
const
int
*
d_segment_offsets_ptr
=
thrust
::
raw_pointer_cast
(
&
d_segment_offsets
[
0
]);
dim3
block
(
32
,
16
);
dim3
grid
(
std
::
min
((
inner_cols
-
1
)
/
block
.
x
+
1
,
65535u
),
std
::
min
((
axis_shape
-
1
)
/
block
.
y
+
1
,
65535u
),
std
::
min
((
outer_rows
-
1
)
/
block
.
z
+
1
,
65535u
));
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
thrust
::
device_vector
<
float
*>
d_output_ptrs
;
d_output_ptrs
.
resize
(
this
->
getNbOutputs
(),
nullptr
);
const
float
*
input_ptr
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
const
*
h_odatas
=
reinterpret_cast
<
float
*
const
*>
(
outputs
);
float
**
output_ptrs
=
thrust
::
raw_pointer_cast
(
&
d_output_ptrs
[
0
]);
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpyAsync
(
output_ptrs
,
h_odatas
,
d_output_ptrs
.
size
()
*
sizeof
(
float
*
),
cudaMemcpyHostToDevice
,
stream
),
platform
::
errors
::
External
(
"CUDA Memcpy failed during split plugin run."
));
split_kernel
<<<
grid
,
block
,
0
,
stream
>>>
(
d_segment_offsets
.
size
(),
d_segment_offsets_ptr
,
input_ptr
,
output_ptrs
,
inner_cols
,
axis_shape
,
outer_rows
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
thrust
::
device_vector
<
half
*>
d_output_ptrs
;
d_output_ptrs
.
resize
(
this
->
getNbOutputs
(),
nullptr
);
const
half
*
input_ptr
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
const
*
h_odatas
=
reinterpret_cast
<
half
*
const
*>
(
outputs
);
half
**
output_ptrs
=
thrust
::
raw_pointer_cast
(
&
d_output_ptrs
[
0
]);
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpyAsync
(
output_ptrs
,
h_odatas
,
d_output_ptrs
.
size
()
*
sizeof
(
half
*
),
cudaMemcpyHostToDevice
,
stream
),
platform
::
errors
::
External
(
"CUDA Memcpy failed during split plugin run."
));
split_kernel
<<<
grid
,
block
,
0
,
stream
>>>
(
d_segment_offsets
.
size
(),
d_segment_offsets_ptr
,
input_ptr
,
output_ptrs
,
inner_cols
,
axis_shape
,
outer_rows
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
浏览文件 @
1a6ce8b9
...
...
@@ -27,28 +27,28 @@ namespace plugin {
class
SplitPlugin
:
public
PluginTensorRT
{
public:
SplitPlugin
()
{}
SplitPlugin
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
SplitPlugin
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
:
axis_
(
axis
),
same_shape_
(
true
),
output_length_
(
output_lengths
)
{}
SplitPlugin
(
void
const
*
serial_data
,
size_t
serial_length
)
{
SplitPlugin
(
void
const
*
serial_data
,
size_t
serial_length
)
{
deserializeBase
(
serial_data
,
serial_length
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
axis_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
output_length_
);
}
SplitPlugin
*
clone
()
const
override
{
SplitPlugin
*
clone
()
const
override
{
return
new
SplitPlugin
(
axis_
,
output_length_
);
}
const
char
*
getPluginType
()
const
override
{
return
"split_plugin"
;
}
const
char
*
getPluginType
()
const
override
{
return
"split_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
output_length_
.
size
();
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
input_dims
,
const
nvinfer1
::
Dims
*
input_dims
,
int
num_inputs
)
override
;
int
initialize
()
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
protected:
size_t
getSerializationSize
()
override
{
...
...
@@ -56,7 +56,7 @@ class SplitPlugin : public PluginTensorRT {
SerializedSize
(
output_length_
)
+
getBaseSerializationSize
();
}
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
axis_
);
...
...
@@ -71,9 +71,64 @@ class SplitPlugin : public PluginTensorRT {
std
::
vector
<
int
>
output_length_
;
std
::
vector
<
int
>
segment_offsets_
;
thrust
::
device_vector
<
int
>
d_segment_offsets_
;
thrust
::
device_vector
<
float
*>
d_output_ptrs_
;
thrust
::
device_vector
<
float
*>
d_output_ptrs_
;
};
#if IS_TRT_VERSION_GE(6000)
class
SplitPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
SplitPluginDynamic
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
:
axis_
(
axis
),
output_length_
(
output_lengths
)
{}
SplitPluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
SplitPluginDynamic
(
axis_
,
output_length_
);
}
const
char
*
getPluginType
()
const
override
{
return
"split_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
output_length_
.
size
();
}
int
initialize
()
override
;
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
outputIndex
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nbInputs
,
nvinfer1
::
IExprBuilder
&
exprBuilder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
private:
int
axis_
;
std
::
vector
<
int
>
output_length_
;
};
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu
浏览文件 @
1a6ce8b9
...
...
@@ -40,15 +40,33 @@ nvinfer1::Dims SwishPlugin::getOutputDimensions(int index,
nvinfer1
::
Dims
output_dims
=
input_dims
;
return
output_dims
;
}
__global__
void
swish_kernel
(
int
num
,
const
float
*
input
,
float
*
output
,
float
beta
)
{
template
<
typename
T
>
__device__
T
math_exp
(
T
a
);
#ifdef SUPPORTS_CUDA_FP16
template
<
>
__device__
half
math_exp
<
half
>
(
half
a
)
{
return
hexp
(
a
);
}
#endif
template
<
>
__device__
float
math_exp
<
float
>
(
float
a
)
{
return
expf
(
a
);
}
template
<
typename
T
>
__global__
void
swish_kernel
(
int
num
,
const
T
*
input
,
T
*
output
,
T
beta
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
num
)
{
#if __CUDA_ARCH__ >= 350
output
[
index
]
=
__ldg
(
input
+
index
)
/
(
1.0
f
+
expf
(
-
beta
*
__ldg
(
input
+
index
)));
__ldg
(
input
+
index
)
/
(
static_cast
<
T
>
(
1.0
)
+
math_exp
<
T
>
(
-
beta
*
__ldg
(
input
+
index
)));
#else
output
[
index
]
=
input
[
index
]
/
(
1.0
f
+
expf
(
-
beta
*
input
[
index
]));
output
[
index
]
=
input
[
index
]
/
(
static_cast
<
T
>
(
1.0
)
+
math_exp
<
T
>
(
-
beta
*
input
[
index
]));
#endif
}
}
...
...
@@ -70,6 +88,97 @@ int SwishPlugin::enqueue(int batch_size, const void *const *inputs,
return
cudaGetLastError
()
!=
cudaSuccess
;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int
SwishPluginDynamic
::
initialize
()
{
setPluginNamespace
(
"swish"
);
getPluginNamespace
();
return
0
;
}
size_t
SwishPluginDynamic
::
getSerializationSize
()
const
{
return
0
;
}
void
SwishPluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
SwishPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
return
inputs
[
0
];
}
bool
SwishPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
#ifdef SUPPORTS_CUDA_FP16
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
SwishPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The Swish Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
int
SwishPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
size_t
num
=
ProductDim
(
input_dims
);
int
threads
=
1024
;
int
blocks
=
(
num
+
threads
-
1
)
/
threads
;
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
swish_kernel
<
float
><<<
blocks
,
threads
,
0
,
stream
>>>
(
num
,
input
,
output
,
beta_
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
const
half
*
input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
swish_kernel
<
half
><<<
blocks
,
threads
,
0
,
stream
>>>
(
num
,
input
,
output
,
static_cast
<
half
>
(
beta_
));
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The Swish TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h
浏览文件 @
1a6ce8b9
...
...
@@ -38,7 +38,7 @@ class SwishPlugin : public PluginTensorRT {
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
beta_
);
...
...
@@ -49,23 +49,74 @@ class SwishPlugin : public PluginTensorRT {
// It was used for tensorrt deserialization.
// It should not be called by users.
SwishPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
SwishPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
beta_
);
}
~
SwishPlugin
()
{}
int
initialize
()
override
;
SwishPlugin
*
clone
()
const
override
{
return
new
SwishPlugin
(
beta_
);
}
SwishPlugin
*
clone
()
const
override
{
return
new
SwishPlugin
(
beta_
);
}
const
char
*
getPluginType
()
const
override
{
return
"swish_plugin"
;
}
const
char
*
getPluginType
()
const
override
{
return
"swish_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
};
#if IS_TRT_VERSION_GE(6000)
class
SwishPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
explicit
SwishPluginDynamic
(
const
float
beta
)
:
beta_
(
beta
)
{}
SwishPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
SwishPluginDynamic
(
beta_
);
}
const
char
*
getPluginType
()
const
override
{
return
"swish_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
;
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
private:
float
beta_
;
};
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
1a6ce8b9
...
...
@@ -373,9 +373,9 @@ if(WITH_GPU AND TENSORRT_FOUND)
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
TRT_MODEL_QUANT_RESNET_DIR
}
)
set
(
TEST_TRT_DYNAMIC_MODEL
"
${
TRT_MODEL_INSTALL_DIR
}
/
test_trt_dy_conv
"
)
set
(
TEST_TRT_DYNAMIC_MODEL
"
${
TRT_MODEL_INSTALL_DIR
}
/
conv_bn_swish_split_gelu
"
)
if
(
NOT EXISTS
${
TEST_TRT_DYNAMIC_MODEL
}
)
inference_download_and_uncompress
(
${
TEST_TRT_DYNAMIC_MODEL
}
${
INFERENCE_URL
}
/tensorrt_test
"
test_trt_dy_conv
.tar.gz"
)
inference_download_and_uncompress
(
${
TEST_TRT_DYNAMIC_MODEL
}
${
INFERENCE_URL
}
/tensorrt_test
"
conv_bn_swish_split_gelu
.tar.gz"
)
endif
()
inference_analysis_test
(
trt_dynamic_shape_test SRCS trt_dynamic_shape_test.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
...
...
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
浏览文件 @
1a6ce8b9
...
...
@@ -21,24 +21,27 @@ limitations under the License. */
namespace
paddle
{
namespace
inference
{
TEST
(
AnalysisPredictor
,
use_gpu
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/
test_trt_dy_conv
"
;
void
TestDynamic
(
bool
with_dynamic
=
true
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/
conv_bn_swish_split_gelu
"
;
AnalysisConfig
config
;
config
.
EnableUseGpu
(
100
,
0
);
config
.
SetModel
(
model_dir
);
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
config
.
SwitchUseFeedFetchOps
(
false
);
// Set the input's min, max, opt shape
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"image"
,
{
1
,
1
,
10
,
10
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
config
.
EnableTensorRtEngine
(
1
<<
30
,
1
,
1
,
AnalysisConfig
::
Precision
::
kFloat32
,
false
,
true
);
if
(
with_dynamic
)
{
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"image"
,
{
1
,
1
,
10
,
10
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
}
auto
predictor
=
CreatePaddlePredictor
(
config
);
auto
input_names
=
predictor
->
GetInputNames
();
int
channels
=
1
;
...
...
@@ -64,5 +67,8 @@ TEST(AnalysisPredictor, use_gpu) {
output_t
->
copy_to_cpu
(
out_data
.
data
());
}
TEST
(
AnalysisPredictor
,
trt_dynamic
)
{
TestDynamic
(
true
);
}
TEST
(
AnalysisPredictor
,
trt_static
)
{
TestDynamic
(
false
);
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录