engine.h 30.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
27 28
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
29
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
30
#include "paddle/fluid/framework/tensor.h"
31
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
32
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
33 34
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
35
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
41 42 43 44 45

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
46 47 48 49
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

50 51 52 53 54 55 56 57 58 59 60
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
61 62
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
63 64 65 66 67 68 69 70 71 72
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
73 74
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
75
                            bool with_dynamic_shape = false) {
76 77
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
78
                    platform::errors::InvalidArgument(
79
                        "TensorRT's tensor input requires at least 1 "
80
                        "dimensions, but input %s has %d dims.",
81 82
                        input,
                        shape.size()));
W
wenbin 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
97 98
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
99 100 101 102
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
103 104
            input,
            ShapeStr(shape)));
105
      }
106
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
107 108 109 110 111
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
112 113
            input,
            ShapeStr(shape)));
W
wenbin 已提交
114 115
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
116
    } else if (shape.size() == 3UL) {
117 118 119 120
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
121 122
            input,
            ShapeStr(shape)));
123
      }
124
      return nvinfer1::Dims2(shape[1], shape[2]);
125 126 127 128 129
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
130 131
            input,
            ShapeStr(shape)));
132 133 134 135 136
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
137
    }
138
    // static shape doesn't support 1D op so far.
139 140
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
141 142 143
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
144 145
                          input,
                          ShapeStr(shape)));
146 147 148 149 150 151 152

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
153 154
  } else {
    if (shape.size() == 4UL) {
155
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
156 157 158
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
159 160 161 162 163 164
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
165 166
  }
}
167
}  // namespace
168

N
nhzlx 已提交
169
class TRTInt8Calibrator;
W
wanghuancoder 已提交
170

Y
Yan Chunwei 已提交
171 172 173 174
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
175
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
176
 */
177 178
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
179
  using ShapeMapType = std::map<std::string, std::vector<int>>;
180
  using PredictorID = int;
181

Y
Yan Chunwei 已提交
182 183 184 185
 public:
  // Weight is model parameter.
  class Weight {
   public:
186
    Weight() = default;
187
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
188 189 190 191
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
192
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
193

194 195 196 197 198 199 200 201
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

202 203
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
204 205 206 207
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
208
  TensorRTEngine(
209
      int max_batch,
210
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
211
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
212 213
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
214 215 216
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
217 218 219
      const ShapeMapType min_shape_tensor = {},
      const ShapeMapType max_shape_tensor = {},
      const ShapeMapType optim_shape_tensor = {},
220
      bool disable_trt_plugin_fp16 = false,
221
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
222
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
223 224
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
225
        precision_(precision),
N
nhzlx 已提交
226
        calibrator_(calibrator),
N
nhzlx 已提交
227
        device_id_(device_id),
228 229 230
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
231 232 233
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
234
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
235
        model_precision_(model_precision),
236 237 238 239
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
240 241
          min_input_shape_.size(),
          max_input_shape_.size(),
242 243 244
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
245 246
              min_input_shape_.size(),
              max_input_shape_.size()));
247
      PADDLE_ENFORCE_EQ(
248 249
          min_input_shape_.size(),
          optim_input_shape_.size(),
250 251 252
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
253 254
              min_input_shape_.size(),
              optim_input_shape_.size()));
255 256 257 258 259 260 261
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
262
    dy::initLibNvInferPlugins(&logger, "");
263
  }
Y
Yan Chunwei 已提交
264

265 266 267 268 269 270 271 272 273
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
274

275
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
276 277 278 279 280
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
281 282
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
283
                     const std::string& name);
L
Luo Tao 已提交
284 285
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
286
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
287

288
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
289 290 291
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
292
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name);
293
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
294 295

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
296
  nvinfer1::IExecutionContext* context() {
297 298 299 300 301 302 303 304 305
#ifndef PADDLE_WITH_TESTING
    PADDLE_ENFORCE_GT(
        predictor_id_per_thread,
        -1,
        platform::errors::InvalidArgument(
            "thread local var predictor_id_per_thread must be "
            "initialized to >= 0, but now predictor_id_per_thread = %d",
            predictor_id_per_thread));
#endif
306
    std::unique_lock<std::mutex> lock(mutex_);
307
    if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
308 309 310 311
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
312 313 314
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
315 316
      infer_context_[predictor_id_per_thread].reset(
          infer_engine_->createExecutionContext());
W
wenbin 已提交
317 318 319
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
320 321
          infer_context_[predictor_id_per_thread]->setOptimizationProfile(
              cur_profile_num_);
W
wenbin 已提交
322
        }
323
        profile_index_[predictor_id_per_thread] = cur_profile_num_;
W
wenbin 已提交
324 325
        ++cur_profile_num_;
      }
326
    }
327
    return infer_context_[predictor_id_per_thread].get();
328
  }
W
wenbin 已提交
329 330 331

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
332 333 334 335 336 337 338 339 340
#ifndef PADDLE_WITH_TESTING
      PADDLE_ENFORCE_GT(
          predictor_id_per_thread,
          -1,
          platform::errors::InvalidArgument(
              "thread local var predictor_id_per_thread must be "
              "initialized to >= 0, but now predictor_id_per_thread = %d",
              predictor_id_per_thread));
#endif
W
wenbin 已提交
341
      std::unique_lock<std::mutex> lock(mutex_);
342
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
343 344 345 346 347 348 349 350 351 352 353
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

354 355 356 357 358
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
359 360 361 362 363 364 365 366 367 368 369 370
#ifndef PADDLE_WITH_TESTING
    PADDLE_ENFORCE_GT(
        predictor_id_per_thread,
        -1,
        platform::errors::InvalidArgument(
            "thread local var predictor_id_per_thread must be "
            "initialized to >= 0, but now predictor_id_per_thread = %d",
            predictor_id_per_thread));
#endif
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
371
  }
N
nhzlx 已提交
372 373

  nvinfer1::IHostMemory* Serialize() {
374 375 376 377
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
378
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
379
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
380 381 382 383 384 385
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
386 387 388 389
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
390
    freshDeviceId();
N
nhzlx 已提交
391
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

415 416
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
417

418 419 420 421 422 423 424 425
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
426

W
wenbin 已提交
427
    binding_num_ = infer_engine_->getNbBindings();
428
    GetEngineInfo();
N
nhzlx 已提交
429 430
  }

431 432
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
433 434 435 436 437 438 439

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
440
  int GetDeviceId() { return device_id_; }
441

442
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
443 444
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
445 446 447 448 449

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

450 451 452 453
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

454 455 456
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
457

458 459 460 461
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

462 463 464 465 466 467 468 469
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
                      const framework::Tensor& weight_tensor);

470 471 472 473 474 475 476 477
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
478 479 480 481 482 483 484
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
485

486 487 488 489 490 491
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
492
    std::string splitter = "__";
493 494 495 496 497 498 499 500
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
501 502 503
    suffix_counter += 1;
  }

504
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
505 506
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
507
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
508 509 510
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
511 512 513 514 515 516
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
517 518 519 520 521 522
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

523 524 525 526 527 528 529
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
530 531
  void Execute(int batch_size,
               std::vector<void*>* buffers,
532 533
               cudaStream_t stream = nullptr);

534
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
535 536 537 538

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
539 540 541
  ShapeMapType min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType optim_shape_tensor() { return optim_shape_tensor_; }
542 543 544 545 546 547 548 549 550

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
551 552
          min_input_shape_.count(name),
          true,
553 554
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
555 556
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
557 558 559 560
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
561 562 563 564
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

596
  bool use_varseqlen() { return use_varseqlen_; }
597
  bool with_ernie() { return with_ernie_; }
598
  bool with_interleaved() { return with_interleaved_; }
599 600 601 602 603 604
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
605
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
606
  bool with_dynamic_shape() { return with_dynamic_shape_; }
607
  AnalysisConfig::Precision precision() { return precision_; }
608

609
#if IS_TRT_VERSION_GE(6000)
610
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
611 612
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
613
      plugin::DynamicPluginTensorRT* plugin) {
614 615 616 617 618
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
639 640
          attrs_.count(attr_name),
          0,
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
659 660
        attrs_.count(attr_name),
        0,
661 662 663 664 665 666 667 668
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
669 670
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
671 672 673
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
674 675
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
692 693
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
694 695 696 697 698
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
699
  void SetProfileNum(int num) { max_profile_num_ = num; }
700 701 702 703

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
704
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
705

Y
Yan Chunwei 已提交
706
 private:
N
nhzlx 已提交
707 708 709 710
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
711 712
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
713

Y
Yan Chunwei 已提交
714 715
  // the max batch size
  int max_batch_;
716 717
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
718
  // the max memory size the engine uses
719
  int64_t max_workspace_;
720

Z
Zhaolong Xing 已提交
721
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
722 723 724
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
725

N
nhzlx 已提交
726
  int device_id_;
W
wenbin 已提交
727 728
  int max_profile_num_{1};
  int cur_profile_num_{0};
729
  std::unordered_map<PredictorID, int> profile_index_;
730 731 732
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
733 734 735
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
736
  bool disable_trt_plugin_fp16_{false};
737
  phi::DataType model_precision_{phi::DataType::FLOAT32};
738
  bool use_varseqlen_{false};
739 740
  bool use_dla_{false};
  int dla_core_{0};
741
  bool with_ernie_{false};
742
  bool with_interleaved_{false};
743 744
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
745 746 747
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
748 749
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
750

751
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
752
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
753
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
754 755 756 757

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
758 759 760 761 762
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
763 764 765 766 767 768
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
769
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
770
      infer_context_;
N
nhzlx 已提交
771
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
772
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
773

774
  std::unordered_map<std::string, paddle::any> attrs_;
775 776
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

777 778 779
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
780
  int binding_num_;
781
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
782
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
783
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
784
#endif
785
  std::mutex mutex_;
786
  bool use_inspector_;
787 788 789

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
790 791
};  // class TensorRTEngine

792
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
793 794 795 796 797 798 799 800 801
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
802
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
803
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
804

805 806 807 808 809 810 811 812 813 814 815 816
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
817
  TensorRTEngine* Create(
818 819
      std::string name,
      int max_batch,
820
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
821
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
822 823
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
824 825 826
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
827 828 829
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
830
      bool disable_trt_plugin_fp16 = false,
831
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
832
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
833 834 835 836 837 838 839 840
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
841 842 843
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
844
                                 disable_trt_plugin_fp16,
845
                                 model_precision,
846
                                 logger);
847 848 849 850 851 852 853 854 855 856
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
857 858 859 860 861 862 863 864
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

865 866 867 868
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
869 870 871
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle