partial_program.py 41.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17
from copy import deepcopy

18
import numpy as np
19

20
import paddle
21
from paddle import _legacy_C_ops
22
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
23
from paddle.fluid import backward, core, framework, program_guard
24
from paddle.fluid.compiler import BuildStrategy
25
from paddle.fluid.data_feeder import check_type, convert_dtype
26 27
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
28
from paddle.fluid.unique_name import guard as UniqueNameGuard
29
from paddle.optimizer.lr import LRScheduler
30 31

from . import logging_utils
32 33 34
from .utils import (
    RETURN_NO_VALUE_MAGIC_NUM,
    backend_guard,
35
    construct_grad_names,
36
)
37

38 39
__all__ = []

40

41
class NestSequence:
42 43 44 45 46 47 48
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
49
        self.__input_list = self.tolist()
50 51 52 53 54 55 56
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
57
        return paddle.utils.flatten(self.__raw_input)
58 59 60 61 62

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
63
        assert len(self.__input_list) == len(value_list)
64
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
65 66 67

    def _get_var_ids(self):
        var_ids = []
68
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
69
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
70 71 72 73 74 75 76 77 78 79
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
80
            for var in self.__input_list:
W
wanghuancoder 已提交
81
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
82 83
                    warning_types.add(type(var))
            if warning_types:
84
                logging_utils.warn(
85 86
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
87 88 89 90
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
91 92 93 94 95 96

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
97
        return self.__input_list[item]
98

99

100
class LazyInitialized:
101 102 103 104 105 106 107 108 109 110 111 112 113
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


114 115 116 117 118
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

119
    def __init__(self):
120 121 122 123 124
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
125 126 127 128 129 130 131 132 133 134 135 136 137 138
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
139 140


X
xiongkun 已提交
141
class PartialProgramLayerHook:
142
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
143 144
        ...

145
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
146 147
        ...

148
    def after_infer(self, infer_program):
X
xiongkun 已提交
149 150 151
        ...


152
class PartialProgramLayer:
153
    """
H
hjyp 已提交
154
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
155 156 157
    and execute them as a static subgraph.

    .. note::
158 159 160
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
161 162 163 164
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
165 166
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
167
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
168 169

    Returns:
170
        Layer: A Layer object that run all ops internally in static graph mode.
171 172
    """

173
    def __init__(
174 175 176 177 178 179 180
        self,
        main_program,
        inputs,
        outputs,
        name_generator,
        parameters=None,
        **kwargs
181
    ):
182
        super().__init__()
183 184
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
185
        self._params = parameters if parameters is not None else []
186
        self._name_generator = name_generator
187

188 189 190
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

191
        self._origin_main_program = self._verify_program(main_program)
192 193 194
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
195
        # Set default mode to train
196
        self.training = True
197
        self._infer_info = ProgramInfo()
198
        self._forward_end_index_map = {}
199

200
        amp_dtype, custom_white_list, custom_black_list = None, None, None
201 202 203
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
204 205 206 207 208 209 210 211 212 213
            amp_dtype = tracer._amp_dtype
        if amp_dtype is not None and amp_dtype in ['float16', 'bfloat16']:
            # For AMP training
            self._amp_list = (
                paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
                    custom_white_list=custom_white_list,
                    custom_black_list=custom_black_list,
                    dtype=amp_dtype,
                )
            )
214

215 216
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
217
        self._hooker = None
218
        self._backend = kwargs.get('backend', None)
219
        self._grad_var_names = {}
220

221 222 223 224
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        with UniqueNameGuard(self._name_generator):
            in_vars, out_vars, in_var_names, resume_name_record = self._prepare(
                inputs
            )
            self._cast_fp16_if_pure_fp16(in_vars)
            attrs = self._prepare_attributes()
            attrs.extend(["x_names", in_var_names])

            self._sync_lr_value_with_scheduler()

            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )

            for var in in_vars:
                if var.name in resume_name_record:
                    var.name = resume_name_record[var.name]

            self._update_stop_gradient(out_vars)
            restored_nest_out = self._restore_out(out_vars)
            return self._remove_no_value(restored_nest_out)
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
270 271 272
    def set_hooker(self, hooker):
        self._hooker = hooker

273 274 275 276 277 278 279 280
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
C
co63oc 已提交
281
                    if scope._can_reused:
282 283 284 285 286 287 288
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

289 290
    @LazyInitialized
    def _double_grads(self):
291 292
        # TODO: check the affects.
        return None
293

294 295 296 297
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
298 299 300 301
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
302
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
303
            return infer_program
304 305
        else:
            train_program = self._append_backward_desc(
306 307
                self._origin_main_program
            )
308 309 310
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
311

312 313 314 315
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
316 317
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
                amp_program, self._amp_list, use_fp16_guard=False, level='O1'
318
            )
319
        if is_infer_mode:
320 321
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
322 323 324 325 326
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
327

328 329 330
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
331 332
            for_test=is_infer_mode
        )
333
        with program_guard(pure_fp16_program):
334
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
335 336
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
337

338
        if is_infer_mode:
339 340
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
341 342 343
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
344 345
                pure_fp16_program
            )
346 347
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
348

349
    @switch_to_static_graph
350
    def _create_forward_backward_train_program(self):
351
        whole_program = self._train_program
X
xiongkun 已提交
352
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
353
        assert forward_end_op_index >= 0
354

355 356 357
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
358

359 360
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
361
        whole_program = self._train_amp_program
362
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
363
        assert forward_end_op_index >= 0
364

365 366 367
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
368 369 370

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
371
        whole_program = self._train_pure_fp16_program
372
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
373
        assert forward_end_op_index >= 0
374

375 376 377
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
378 379

    @LazyInitialized
380 381
    def _train_program(self):
        return self._create_program()
382

383
    @LazyInitialized
384
    def _infer_program(self):
385 386
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
387

388 389 390 391 392 393
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
394 395
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
396 397 398

    @LazyInitialized
    def _train_pure_fp16_program(self):
399
        return self._create_pure_fp16_program()
400

401
    @LazyInitialized
402
    def _infer_pure_fp16_program(self):
403 404
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
405
        )
406
        return self._build_infer_program(program, op_size)
407

408
    @LazyInitialized
409 410 411
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
412 413

    @LazyInitialized
414 415 416 417
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

418 419 420 421
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

422 423 424 425 426
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

427 428
    @LazyInitialized
    def _train_program_id(self):
429
        program_id = paddle.utils._hash_with_id(self._train_program, self)
430 431 432
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
433
        return program_id
434

435 436
    @LazyInitialized
    def _infer_program_id(self):
437
        return paddle.utils._hash_with_id(self._infer_program, self)
438

439 440
    @LazyInitialized
    def _train_amp_program_id(self):
441
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
442 443 444
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
445 446
        return program_id

447 448
    @LazyInitialized
    def _infer_amp_program_id(self):
449
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
450

451 452
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
453 454 455
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
456 457 458
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
459 460
        return program_id

461 462
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
463
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
464

X
xiongkun 已提交
465
    def get_forward_end_op_idx(self, program):
466 467 468
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
469

470
    @property
471 472 473 474 475 476 477 478 479 480 481 482 483 484
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

553 554 555 556 557 558 559 560 561 562 563 564
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

565 566 567
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
568 569 570 571 572 573 574
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
575

576 577 578 579 580 581 582 583 584
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
585 586
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
603 604
                    lambda x: x[0] >= start_idx
                    and any(
605 606
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
607 608 609 610
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
611 612 613 614 615 616

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
617 618 619 620 621 622
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
623 624 625 626 627 628 629 630 631 632
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
633 634
                outputs={"Out": var_grad_name},
            )
635 636 637
            return None

        to_processed_vars = list(
638 639
            filter(_need_aggregation, self._outputs.tolist())
        )
640 641 642
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

643
    @switch_to_static_graph
644
    def _append_backward_desc(self, main_program):
645
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
646
        if self._hooker:
647
            program = self._hooker.before_append_backward(program)
648
        targets = []
649
        for out in self._outputs.tolist():
650 651 652
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
653
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
654
        if targets:
655
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
656
            with backend_guard(self._backend):
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
                check_type(
                    targets,
                    'targets',
                    (framework.Variable, list, tuple),
                    'paddle.static.gradients',
                )
                grad_info_map = backward.calc_gradient_helper(
                    targets=targets, inputs=[]
                )

                x_vars = [
                    program.block(0).var(var.name)
                    for var in self._inputs
                    if isinstance(var, framework.Variable)
                ]
                param_vars = [
                    program.block(0).var(param.name) for param in self._params
                ]
                out_vars = [
                    program.block(0).var(var.name)
                    for var in self._outputs
                    if isinstance(var, framework.Variable)
                ]

                self._grad_var_names = construct_grad_names(
                    grad_info_map, x_vars, param_vars, out_vars
                )
684

X
xiongkun 已提交
685 686
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
687
                    program, start_idx
X
xiongkun 已提交
688
                )
689 690 691
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
692

X
xiongkun 已提交
693
        self._forward_end_index_map[
694
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
695
        ] = start_idx - len(self._outputs.tolist())
696 697
        return program

698 699 700
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
701
        The `@to_static` may only decorated a sub function which
702 703 704 705 706 707
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
708
            found_param = False
709
            for block in program.blocks:
710
                for op in block.ops:
711 712 713 714
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
715 716 717 718
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
719 720 721 722
                    break

        self._params = required_params

723 724 725 726 727 728 729 730 731 732 733
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
734

735
    def _prepare_attributes(self):
736
        attrs = [
737 738 739 740
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
741 742 743 744
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
745
        ]
X
xiongkun 已提交
746

747 748 749 750 751 752 753
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
754
                    self._grad_var_names.get('param', []),
755
                    'out_grad_names',
756 757 758
                    self._grad_var_names.get('out', []),
                    'x_grad_names',
                    self._grad_var_names.get('x', []),
759 760
                )
            )
761 762
        if self._cuda_graph_capture_mode:
            attrs.extend(
763 764 765 766 767 768 769
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
770
        return attrs
771

772 773 774 775 776 777 778 779 780 781 782 783
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
784

785
    @switch_to_static_graph
786 787 788
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
789 790
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
791
        backward_start_op_index = forward_end_op_index + len(
792 793
            self._outputs.var_ids
        )
794
        backward_end_op_index = whole_program.desc.block(0).op_size()
795 796
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
797 798 799
        backward_skip_vars = self._parse_skip_gc_vars(
            whole_program
        ) + self._grad_var_names.get('param', [])
800
        backward_builded_program = add_build_strategy_for(
801 802 803 804
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
805 806 807 808 809 810 811 812 813 814 815 816
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
817
        )
818

819 820 821
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
822 823 824 825 826 827
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
828
            "for_partial_block": "bool",
829 830 831 832
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
833 834 835 836
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
837 838 839 840 841 842
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
843 844 845 846 847 848 849 850
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    forward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
851 852 853 854 855 856
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
857 858 859 860 861 862 863 864
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    backward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
893
                backward_program.desc, True
894 895 896 897
            ):
                skip_vars.append(var_name)
        return skip_vars

898 899 900 901 902
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
903
        # Flatten inputs with nested structure into single list.
904
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
905
        # Convert variable into Tensor and feed in training data.
906
        input_vars = []
907 908
        input_var_names = []
        resume_name_record = {}
909
        expected_place = framework._current_expected_place()
910
        for i, value in enumerate(flatten_inputs):
911
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
912
                var = None
W
wanghuancoder 已提交
913 914 915 916 917 918 919 920
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
921 922 923 924
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
925 926
                    expected_place
                ):
927 928
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
929 930
                else:
                    var = value
931
                resume_name_record[self._inputs[i].desc.name()] = var.name
932
                var.name = self._inputs[i].desc.name()
933 934
            else:
                continue
935
            input_var_names.append(self._inputs[i].desc.name())
936
            input_vars.append(var)
937

W
wanghuancoder 已提交
938
        # mapping from name(string) -> Tensor
939
        out_tensor_map = {}
940

941 942
        def create_out(var_id):
            var = self._outputs[var_id]
943
            assert isinstance(var, framework.Variable)
944
            var_desc = var.desc
945

946 947
            if var_desc.name() in out_tensor_map:
                return out_tensor_map[var_desc.name()]
948

949
            out = core.eager.Tensor(
W
wanghuancoder 已提交
950 951 952 953 954 955
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
956 957 958
            out.stop_gradient = var.stop_gradient
            out_tensor_map[var_desc.name()] = out
            return out
959

W
wanghuancoder 已提交
960
        # Create Tensor to receive output data.
961 962
        out_vars = list(map(create_out, self._outputs.var_ids))

963
        return input_vars, out_vars, input_var_names, resume_name_record
964

965
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
966
        # Hold forward variables
J
Jiabin Yang 已提交
967
        tmp_scope_vec = None
968 969 970
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
971
        tmp_scope_vec = [inner_scope]
972
        return tmp_scope_vec
973

974
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
975
        var = core.eager.Tensor(
976 977 978 979 980 981
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
982 983 984
        var.stop_gradient = True
        return var

X
xiongkun 已提交
985 986 987 988 989 990 991 992 993 994 995
    def _update_stop_gradient(self, out_vars):
        # Update stop_gradient for all outputs
        def set_stop_gradient(var_id, eager_tensor):
            var = self._outputs[var_id]
            assert isinstance(var, framework.Variable)
            eager_tensor.stop_gradient = var.stop_gradient
            return None

        for idx, var in zip(self._outputs.var_ids, out_vars):
            set_stop_gradient(idx, var)

996 997
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
998
        Restores same nested outputs by only replacing the Variable with Tensor.
999 1000 1001 1002 1003 1004
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
1005
        if outs is not None and len(outs) == 1:
1006 1007 1008 1009
            outs = outs[0]

        return outs

1010 1011 1012 1013
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1014
    def _is_no_value(self, var):
W
wanghuancoder 已提交
1015
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
1016 1017
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1018 1019 1020 1021 1022 1023 1024
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
1025
        if isinstance(out_vars, core.eager.Tensor):
1026 1027 1028 1029 1030
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1031 1032 1033
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1034 1035 1036 1037
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1038
            has_removed = len(out_vars) > len(res)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1049
    def _set_grad_type(self, params, train_program):
1050 1051
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1052
        # set param grad Tensor by forward Tensor(LoDTensor)
1053 1054 1055 1056 1057
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1058
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1059 1060 1061 1062 1063
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1077 1078 1079
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1080
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1081
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1082
               Because they share same data with EagerParamBase of original dygraph.
1083 1084 1085 1086
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1087 1088
                % type(self._params)
            )
1089

1090 1091 1092
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1093
            if not isinstance(var, core.eager.Tensor):
1094
                raise TypeError(
1095 1096 1097 1098
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1099
            param_and_buffer_names_set.add(var.name)
1100 1101

        for block in main_program.blocks:
1102
            for name, var in block.vars.items():
1103
                if isinstance(var, framework.Parameter):
1104
                    if name not in param_and_buffer_names_set:
1105
                        raise ValueError(
1106 1107 1108 1109 1110 1111
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1112 1113
                            % name
                        )
1114

1115
    def _valid_vars(self, vars):
1116
        return vars if vars else None
1117

1118

1119
def partial_program_from(concrete_program, from_method=False):
1120
    inputs = concrete_program.inputs
1121 1122 1123

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1124 1125
        inputs = inputs[1:]

1126 1127 1128 1129
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
1130
        concrete_program.name_generator,
1131 1132 1133
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1134 1135 1136


@switch_to_static_graph
1137
def add_build_strategy_for(
1138
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1139 1140
):
    if start_op_index < end_op_index:
1141 1142
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1143 1144
            build_strategy=build_strategy,
        )
1145 1146 1147
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1148 1149 1150
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1151 1152
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1153 1154 1155 1156
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1157
    else:
X
xiongkun 已提交
1158
        # can't just create a new program, we need copy the vardesc.
1159
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1160 1161
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1162
    return builded_program