launch.py 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56
                your_training_py (arg1 arg2 and all others)
"""

57
import shutil
58
import sys
59
import tempfile
60 61 62
import os
import time
import copy
63
import pathlib
64
from argparse import ArgumentParser, REMAINDER
65
import paddle.framework as framework
66
from paddle.distributed.fleet import launch_utils
67
from paddle.distributed.fleet.launch_utils import (
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    get_host_name_ip,
    find_free_ports,
    logger,
    get_cluster,
    DeviceMode,
    start_local_trainers,
    direct_start,
    watch_local_trainers,
    terminate_local_procs,
    DistributeMode,
    ParameterServerLauncher,
    get_logger,
    check_backend,
    block_windows_and_macos,
)
83 84
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
85

K
kuizhiqing 已提交
86
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
87

88 89
__all__ = []

90 91 92

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
93
    for arg, value in sorted(vars(args).items()):
94 95 96 97 98 99 100 101 102 103 104 105
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
106 107
'''
    )
108
    base_group = parser.add_argument_group("Base Parameters")
109

110 111
    base_group.add_argument(
        "--log_dir",
112
        type=str,
113
        default="log",
114 115
        help="The path for each process's log. Default --log_dir=log/",
    )
X
xiongkun 已提交
116 117 118
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
119 120
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
121 122
        "Default value is auto which perfers nccl or bkcl.",
    )
123 124 125 126 127 128
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
129 130
        " bound to one or average number of gpus.",
    )
131

132 133 134
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
135
        default=None,
136 137
        help="run mode of job, can be:collective/ps/ps-heter",
    )
138

139
    if framework.core.is_compiled_with_cuda():
140 141 142 143 144 145
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
146
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu.",
147 148 149
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

150
    if framework.core.is_compiled_with_xpu():
151 152 153 154 155
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
156
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu.",
157 158
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
159

160
    if framework.core.is_compiled_with_npu():
K
kuizhiqing 已提交
161 162 163 164 165
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
166
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu.",
K
kuizhiqing 已提交
167 168 169
        )
        base_group.add_argument("--selected_npus", dest="npus")

170
    if framework.core.is_compiled_with_mlu():
Z
zn 已提交
171 172 173 174 175
        base_group.add_argument(
            "--mlus",
            type=str,
            default=None,
            help="It's for mlu training. For example: "
176
            "--mlus=\"0,1,2,3\" will launch four training processes each bound to one mlu.",
Z
zn 已提交
177 178 179
        )
        base_group.add_argument("--selected_mlus", dest="mlus")

180 181 182 183 184 185 186 187
    base_group.add_argument(
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script",
    )
188

189 190 191 192 193 194 195 196 197
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
198 199
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..",
    )
200
    collective_group.add_argument(
201 202 203 204
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
205 206
        "to represent the cluster topology information for auto parallel.",
    )
207 208 209 210 211
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
212 213
        "to map processes to machines for auto parallel.",
    )
214 215 216 217
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
218 219
        help="Set true to enable the lazy launch for auto-parallel scenario.",
    )
220 221 222

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
223 224 225 226 227 228 229 230 231 232 233 234
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port"
    )
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port"
    )
    ps_group.add_argument(
        "--coordinators",
        type=str,
        default="",
        help="User defined coordinators ip:port",
    )
235 236 237 238
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
239 240
        help="User defined heter workers in each stage ip1:port1;ip2:port2",
    )
241 242 243 244
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
245 246
        help="User defined heter devices in each stage cpu;gpu;cpu",
    )
247 248

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
249 250 251
    ps_group.add_argument(
        "--coordinator_num", type=int, help="number of coordinators"
    )
252
    ps_group.add_argument("--server_num", type=int, help="number of servers")
253 254 255 256 257
    ps_group.add_argument(
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3",
    )
258
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
259

260 261
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
262 263 264 265 266 267
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port"
    )
    elastic_group.add_argument(
        "--elastic_pre_hook", type=str, help="elastic pre_hook shell cmd"
    )
268

269 270 271
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
272 273 274 275 276 277
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env"
    )
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force"
    )
278

K
kuizhiqing 已提交
279 280
    known_args, _ = parser.parse_known_args()
    return known_args
281 282


283
def get_cluster_from_args(args, device_mode, devices_per_proc):
284 285 286 287
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
288 289 290 291
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
292

293 294 295
    assert (
        node_ip in node_ips
    ), "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
296 297
    node_rank = node_ips.index(node_ip)

298 299 300 301 302
    logger.debug(
        "parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
            node_ips, node_ip, node_rank
        )
    )
303 304

    free_ports = None
305 306 307 308 309
    if (
        not cloud_utils.use_paddlecloud()
        and len(node_ips) <= 1
        and os.environ.get('FLAGS_START_PORT') is None
    ):
310
        free_ports = find_free_ports(len(devices_per_proc))
311 312
        if free_ports is not None:
            free_ports = list(free_ports)
G
gongweibao 已提交
313
            logger.info("find free ports:{}".format(free_ports))
314 315 316
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
317
            start_port = int(os.environ.get('FLAGS_START_PORT'))
318

319 320 321
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
322

323 324 325
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
326 327 328
    return get_cluster(
        node_ips, node_ip, trainer_endpoints, device_mode, devices_per_proc
    )
329 330


X
xiongkun 已提交
331 332 333 334
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
335 336
            % args.ips
        )
X
xiongkun 已提交
337
    if args.run_mode:
338 339 340
        assert (
            args.run_mode == 'cpuonly'
        ), "CPUONLY launch only support run mode is CPUONLY"
X
xiongkun 已提交
341 342 343 344 345
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


346
def get_cluster_info(args):
K
kuizhiqing 已提交
347
    # parse arguments, used for cloud-single-machine and local
348 349
    if args.backend == 'gloo':
        cpuonly_check(args)
350 351 352
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
353 354 355
        (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(
            args
        )
K
kuizhiqing 已提交
356
    trainers_num = cloud_utils.get_trainers_num()
357 358 359 360 361
    logger.debug(
        "parsed from args trainerss_num:{} mode:{} devices:{}".format(
            trainers_num, device_mode, devices_per_proc
        )
    )
K
kuizhiqing 已提交
362

363 364
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
365 366 367 368 369 370
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
371
    # auto mapping between processes and devices for auto-parallel
372
    if args.enable_auto_mapping:
373 374 375
        assert (
            args.cluster_topo_path is not None
        ), "The cluster topology must be provied when enabling auto mapping."
376
        rank_mapping_path = args.rank_mapping_path or os.getenv(
377 378
            "PADDLE_RANK_MAPPING_PATH"
        )
379 380 381
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
382 383
                enable_elastic(args, device_mode)
            )
384
            cwd = pathlib.Path().resolve()
385 386 387
            rank_mapping_path = os.path.join(
                cwd, "auto_parallel_rank_mapping.json"
            )
388 389 390 391 392 393
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
394 395 396 397 398 399 400 401
                args.enable_auto_mapping
            )
            (
                cluster,
                pod,
            ) = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode
            )
402 403 404
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
405 406
                enable_elastic(args, device_mode)
            )
407 408 409 410

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
411 412 413 414 415 416 417 418
                args.enable_auto_mapping
            )
            (
                cluster,
                pod,
            ) = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode
            )
K
kuizhiqing 已提交
419
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
420 421 422
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port
        )
K
kuizhiqing 已提交
423 424
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
425
        # for ascend
426 427 428 429 430
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port,
        )
K
kuizhiqing 已提交
431 432
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
433 434 435
        cluster, pod = get_cluster_from_args(
            args, device_mode, devices_per_proc
        )
K
kuizhiqing 已提交
436
        logger.debug("get cluster from args:{}".format(cluster))
437 438
    return cluster, pod

439

440
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
441 442 443 444
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
445
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
446
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
447 448 449 450 451 452 453
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
454

455 456 457 458 459 460 461 462
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs,
    )
K
kuizhiqing 已提交
463 464 465

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
466

K
kuizhiqing 已提交
467
    while True:
K
kuizhiqing 已提交
468 469
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
470

K
kuizhiqing 已提交
471 472 473 474
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
475

K
kuizhiqing 已提交
476 477 478 479 480 481
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
482

483 484
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
485

486

487 488 489 490 491 492 493
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
494
    # elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
495 496 497 498
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
499 500 501 502 503 504

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


505
def infer_backend(args):
506 507
    if args.backend != "auto":
        return
508
    if framework.core.is_compiled_with_cuda():
509
        args.backend = 'nccl'
510
    elif framework.core.is_compiled_with_npu():
511
        args.backend = 'unknown'
512
    elif framework.core.is_compiled_with_xpu():
513
        args.backend = 'bkcl'
514
    elif framework.core.is_compiled_with_mlu():
Z
zn 已提交
515
        args.backend = 'cncl'
516 517 518 519
    else:
        args.backend = 'gloo'


520
def which_distributed_mode(args):
521
    infer_backend(args)  # modify the args.backend
522 523 524 525 526 527 528 529 530 531
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

532
    ps_args = [
533 534 535 536 537 538 539 540
        '--worker_num',
        '--server_num',
        '--heter_worker_num',
        '--servers',
        '--workers',
        '--heter_workers',
        '--heter_devices',
        '--http_port',
541
    ]
542
    collective_args = ['--ips']
543

544
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
545

546 547
    coordinator_args = ["--coordinator_num", "--coordinators"]

548 549 550 551
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
552 553
        co_arg
        for co_arg in collective_args
554 555
        if co_arg in " ".join(sys.argv[1:-1])
    ]
556 557 558 559 560 561

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

562 563 564 565 566 567 568 569
    if framework.core.is_compiled_with_cuda():
        accelerators = framework.core.get_cuda_device_count()
    elif framework.core.is_compiled_with_npu():
        accelerators = framework.core.get_npu_device_count()
    elif framework.core.is_compiled_with_xpu():
        accelerators = framework.core.get_xpu_device_count()
    elif framework.core.is_compiled_with_mlu():
        accelerators = framework.core.get_mlu_device_count()
570
    else:
571
        accelerators = 0
572

573 574
    if len(has_ps_args) > 0:
        logger.info(
575 576 577 578
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".format(
                has_ps_args, accelerators
            )
        )
579
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
580
        has_coordinator_args = list(set(has_ps_args) & set(coordinator_args))
581 582 583 584
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
585
    elif len(has_collective_args) > 0:
586 587
        logger.info(
            "Run collective mode. gpu arguments:{}, cuda count:{}".format(
588 589 590
                has_collective_args, accelerators
            )
        )
591
        return DistributeMode.COLLECTIVE
592
    else:
593
        if (
594 595 596
            not framework.core.is_compiled_with_cuda()
            and not framework.core.is_compiled_with_xpu()
            and not framework.core.is_compiled_with_mlu()
597
        ):
X
xiongkun 已提交
598 599
            if args.servers:
                logger.warning(
Z
zn 已提交
600
                    "Not found distinct arguments and not compiled with cuda or xpu or npu or mlu. "
601 602
                    "But found args.servers not empty, default use ps mode"
                )
X
xiongkun 已提交
603 604 605
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
606 607
        else:
            logger.warning(
Z
zn 已提交
608
                "Not found distinct arguments and compiled with cuda or xpu or npu or mlu. "
609 610
                "Default use collective mode"
            )
611
            return DistributeMode.COLLECTIVE
612 613 614


def launch():
G
Guoxia Wang 已提交
615 616
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
617

G
Guoxia Wang 已提交
618 619 620 621 622 623 624 625 626
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
627
                             training_script ...
G
Guoxia Wang 已提交
628 629 630


    Base Parameters:
G
Guoxia Wang 已提交
631
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
632

G
Guoxia Wang 已提交
633
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
634

G
Guoxia Wang 已提交
635
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
636

G
Guoxia Wang 已提交
637
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
638 639

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
640

G
Guoxia Wang 已提交
641
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
642

G
Guoxia Wang 已提交
643 644
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

Z
zn 已提交
645 646 647 648
        - ``--mlus``: It's for mlu training. e.g., ``--mlus=0,1,2,3`` will launch four training processes each bound to one mlu.

        - ``--selected_mlus``: mlus aliases, recommend to use ``--mlus``.

649
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
G
Guoxia Wang 已提交
650

G
Guoxia Wang 已提交
651
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
652 653

    Collective Parameters:
G
Guoxia Wang 已提交
654
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
655 656

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
657
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
658

G
Guoxia Wang 已提交
659
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
660

661
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
662 663 664 665 666

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

667
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
668

669
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
670 671 672 673

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
674
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
675

G
Guoxia Wang 已提交
676
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
677

G
Guoxia Wang 已提交
678
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
679 680 681 682 683 684 685 686 687 688

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
689

G
Guoxia Wang 已提交
690
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
691 692

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
693

G
Guoxia Wang 已提交
694 695 696 697
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
698 699
            # The parameters of --gpus and --ips must be consistent in each node.

700
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17
G
Guoxia Wang 已提交
701 702 703 704 705 706 707

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
708

G
Guoxia Wang 已提交
709 710 711 712
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
713
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
714

G
Guoxia Wang 已提交
715
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
716

G
Guoxia Wang 已提交
717 718 719 720
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
721
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
735
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
736

G
Guoxia Wang 已提交
737 738
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
739

G
Guoxia Wang 已提交
740 741 742 743
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
744
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
760
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
761

G
Guoxia Wang 已提交
762 763
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
764

G
Guoxia Wang 已提交
765 766 767 768
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
769
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
786

G
Guoxia Wang 已提交
787 788
    """

789 790 791 792
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
793
    if args.backend == 'auto':
794
        distribute_mode = which_distributed_mode(
795 796
            args
        )  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
797
    else:
798
        assert (
799
            args.run_mode == 'collective' or args.run_mode is None
800
        ), "When backend is not 'auto', run mode must be collective"
X
xiongkun 已提交
801 802 803
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

804
    # assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
805

X
xiongkun 已提交
806 807
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
808

809
    block_windows_and_macos(
810 811
        args.backend
    )  # raise error when using gloo on windows or macos
812

K
kuizhiqing 已提交
813 814 815
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
816

K
kuizhiqing 已提交
817 818
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
819
    else:
K
kuizhiqing 已提交
820
        launch_ps(args, distribute_mode)
821 822 823 824


if __name__ == "__main__":
    launch()