launch.py 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
71
from paddle.distributed.fleet import launch_utils
72

73
# TODO(danleifeng): Don't import * from a module
74 75
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
76
import paddle.distributed.fleet.ascend_utils as ascend_utils
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
95
    base_group = parser.add_argument_group("Base Parameters")
96

97 98
    base_group.add_argument(
        "--log_dir",
99
        type=str,
100 101 102 103
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

104 105 106 107 108 109 110 111
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

112 113 114 115 116 117
    base_group.add_argument(
        "--run_mode",
        type=str,
        default="collective",
        help="run mode of job, can be:collective/ps/ps-heter")

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
138

139
    base_group.add_argument(
140 141 142 143 144 145 146
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")
174
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
175

176 177 178
    return parser.parse_args()


179
def get_cluster_from_args(args, device_mode, devices_per_proc):
180 181 182 183 184 185
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

186
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
187
        % (node_ip, node_ips)
188 189
    node_rank = node_ips.index(node_ip)

190
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
191 192 193 194 195
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
196
        free_ports = find_free_ports(len(devices_per_proc))
197 198 199 200 201
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
202
            start_port = int(os.environ.get('FLAGS_START_PORT'))
203

204 205 206
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
207

208 209 210
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
211 212
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
213 214 215 216


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
217
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
218
    trainers_num = cloud_utils.get_trainers_num()
219 220
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))
221 222 223 224

    cluster = None
    pod = None

225 226 227
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
228
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
229 230
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
231
        logger.debug("get cluster from cloud:{}".format(cluster))
232 233 234 235 236 237
    elif device_mode == DeviceMode.ASCEND_NPU:
        # for ascend
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port)
238 239
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
240 241
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
242
        logger.debug("get cluster from args:{}".format(cluster))
243

244 245 246
    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
L
lilong12 已提交
247
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
248
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
249 250
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

251 252 253 254 255
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
256 257
        log_dir=args.log_dir,
        envs=global_envs)
258

259 260 261
    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))

262 263 264 265
    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
266 267
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
268 269 270 271
            break

        time.sleep(3)

272 273 274
    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)

275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
295 296 297 298 299 300 301 302 303 304
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

305
    ps_args = [
306 307
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
        '--workers', '--heter_workers', '--http_port'
308
    ]
309
    collective_args = ['--ips']
310

311
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
312 313 314 315 316 317 318 319

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
320 321 322 323 324 325

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

326
    if fluid.core.is_compiled_with_cuda():
327 328 329
        accelerators = fluid.core.get_cuda_device_count()
    elif fluid.core.is_compiled_with_ascend():
        accelerators = fluid.core.NPUDevice.get_device_count()
330
    elif fluid.core.is_compiled_with_xpu():
331
        accelerators = fluid.core.get_xpu_device_count()
332
    else:
333
        accelerators = 0
334

335 336
    if len(has_ps_args) > 0:
        logger.info(
337 338
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
339 340 341 342 343
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
344
    elif len(has_collective_args) > 0:
345 346
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
347
        return DistributeMode.COLLECTIVE
348
    else:
349 350
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
351
            logger.warning(
352
                "Not found distinct arguments and not compiled with cuda or xpu. Default use ps mode"
353 354 355 356
            )
            return DistributeMode.PS
        else:
            logger.warning(
357
                "Not found distinct arguments and compiled with cuda or xpu. Default use collective mode"
358 359
            )
            return DistributeMode.COLLECTIVE
360 361 362 363 364 365 366 367 368


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
    if distribute_mode == DistributeMode.COLLECTIVE:
369
        launch_collective(args)
370 371
    else:
        launch_ps(args, distribute_mode)
372 373 374 375


if __name__ == "__main__":
    launch()