launch.py 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67
from sys import version
import subprocess
import os
import time
import six
import copy
68
import pathlib
69
import argparse
70 71 72
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
73
from paddle.distributed.fleet import launch_utils
74

75
# TODO(danleifeng): Don't import * from a module
76
from paddle.distributed.fleet.launch_utils import *
77 78
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
79

K
kuizhiqing 已提交
80
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
81

82 83
__all__ = []

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
101
    base_group = parser.add_argument_group("Base Parameters")
102

103 104
    base_group.add_argument(
        "--log_dir",
105
        type=str,
106
        default="log",
G
Guoxia Wang 已提交
107
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
108 109 110
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
111 112 113
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
114 115 116 117 118 119 120 121
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

122 123 124
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
125
        default=None,
126 127
        help="run mode of job, can be:collective/ps/ps-heter")

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
148

K
kuizhiqing 已提交
149 150 151 152 153 154 155 156 157 158
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

Z
zn 已提交
159 160 161 162 163 164 165 166 167 168
    if fluid.core.is_compiled_with_mlu():
        base_group.add_argument(
            "--mlus",
            type=str,
            default=None,
            help="It's for mlu training. For example: "
            "--mlus=\"0,1,2,3\" will launch four training processes each bound to one mlu."
        )
        base_group.add_argument("--selected_mlus", dest="mlus")

169 170 171 172 173 174
    base_group.add_argument("training_script",
                            type=str,
                            help="The full path to the single GPU training "
                            "program/script to be launched in parallel, "
                            "followed by all the arguments for the "
                            "training script")
175

176 177 178 179 180 181 182 183 184 185
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
186
    collective_group.add_argument(
187 188 189 190 191 192 193 194 195 196 197
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to represent the cluster topology information for auto parallel.")
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to map processes to machines for auto parallel.")
198 199 200 201 202
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
203 204 205

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
206 207 208 209 210 211 212 213
    ps_group.add_argument("--servers",
                          type=str,
                          default="",
                          help="User defined servers ip:port")
    ps_group.add_argument("--workers",
                          type=str,
                          default="",
                          help="User defined workers ip:port")
214 215 216 217
    ps_group.add_argument("--coordinators",
                          type=str,
                          default="",
                          help="User defined coordinators ip:port")
218 219 220 221
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
222
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
223 224 225 226
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
227
        help="User defined heter devices in each stage cpu;gpu;cpu")
228 229

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
230 231 232
    ps_group.add_argument("--coordinator_num",
                          type=int,
                          help="number of coordinators")
233
    ps_group.add_argument("--server_num", type=int, help="number of servers")
234 235 236
    ps_group.add_argument("--heter_worker_num",
                          type=str,
                          help="number of heter_workers in each stage 1;2;3")
237
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
238

239 240
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
241 242 243 244 245 246
    elastic_group.add_argument("--elastic_server",
                               type=str,
                               help="etcd server host:port")
    elastic_group.add_argument("--elastic_pre_hook",
                               type=str,
                               help="elastic pre_hook shell cmd")
247

248 249 250
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
251 252 253 254 255 256 257
    elastic_group.add_argument("--host",
                               type=str,
                               help="bind host, default to POD_IP env")
    elastic_group.add_argument("--force",
                               type=bool,
                               default=False,
                               help="update np force")
258

K
kuizhiqing 已提交
259 260
    known_args, _ = parser.parse_known_args()
    return known_args
261 262


263
def get_cluster_from_args(args, device_mode, devices_per_proc):
264 265 266 267
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
268 269 270 271
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
272

273
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
274
        % (node_ip, node_ips)
275 276
    node_rank = node_ips.index(node_ip)

277
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
278 279 280 281 282
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
283
        free_ports = find_free_ports(len(devices_per_proc))
284 285
        if free_ports is not None:
            free_ports = list(free_ports)
G
gongweibao 已提交
286
            logger.info("find free ports:{}".format(free_ports))
287 288 289
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
290
            start_port = int(os.environ.get('FLAGS_START_PORT'))
291

292 293 294
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
295

296 297 298
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
299 300
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
301 302


X
xiongkun 已提交
303 304 305 306 307 308 309 310 311 312 313 314
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


315
def get_cluster_info(args):
K
kuizhiqing 已提交
316
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
317
    if args.backend == 'gloo': cpuonly_check(args)
318 319 320 321 322
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
K
kuizhiqing 已提交
323 324 325 326
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

327 328
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
329 330 331 332 333 334
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
335
    # auto mapping between processes and devices for auto-parallel
336
    if args.enable_auto_mapping == True:
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        assert args.cluster_topo_path is not None, \
            "The cluster topology must be provied when enabling auto mapping."
        rank_mapping_path = args.rank_mapping_path or os.getenv(
            "PADDLE_RANK_MAPPING_PATH")
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))
            cwd = pathlib.Path().resolve()
            rank_mapping_path = os.path.join(cwd,
                                             "auto_parallel_rank_mapping.json")
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode)
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode)
K
kuizhiqing 已提交
368
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
369 370 371
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, device_mode,
                                                     devices_per_proc,
                                                     start_port)
K
kuizhiqing 已提交
372 373
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
374
        # for ascend
375 376 377 378
        cluster, pod = ascend_utils.get_cloud_cluster(rank_table_file=os.getenv(
            "RANK_TABLE_FILE", None),
                                                      device_mode=device_mode,
                                                      start_port=start_port)
K
kuizhiqing 已提交
379 380 381 382 383
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
384 385
    return cluster, pod

386

387
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
388 389 390 391
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
392
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
393
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
394 395 396 397 398 399 400
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
401

402 403 404 405 406 407
    procs = start_local_trainers(cluster,
                                 pod,
                                 training_script=args.training_script,
                                 training_script_args=args.training_script_args,
                                 log_dir=args.log_dir,
                                 envs=global_envs)
K
kuizhiqing 已提交
408 409 410

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
411

K
kuizhiqing 已提交
412
    while True:
K
kuizhiqing 已提交
413 414
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
415

K
kuizhiqing 已提交
416 417 418 419
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
420

K
kuizhiqing 已提交
421 422 423 424 425 426
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
427

428 429
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
430

431

432 433 434 435 436 437 438
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
439 440 441 442 443
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
444 445 446 447 448 449

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


450 451 452 453 454 455 456 457
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
Z
zn 已提交
458 459
    elif fluid.core.is_compiled_with_mlu():
        args.backend = 'cncl'
460 461 462 463
    else:
        args.backend = 'gloo'


464
def which_distributed_mode(args):
465
    infer_backend(args)  # modify the args.backend
466 467 468 469 470 471 472 473 474 475
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

476
    ps_args = [
477
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
478
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
479
    ]
480
    collective_args = ['--ips']
481

482
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
483

484 485
    coordinator_args = ["--coordinator_num", "--coordinators"]

486 487 488 489 490 491 492
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
493 494 495 496 497 498

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

499
    if fluid.core.is_compiled_with_cuda():
500
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
501 502
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
503
    elif fluid.core.is_compiled_with_xpu():
504
        accelerators = fluid.core.get_xpu_device_count()
Z
zn 已提交
505 506
    elif fluid.core.is_compiled_with_mlu():
        accelerators = fluid.core.get_mlu_device_count()
507
    else:
508
        accelerators = 0
509

510 511
    if len(has_ps_args) > 0:
        logger.info(
512 513
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}"
            .format(has_ps_args, accelerators))
514
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
515
        has_coordinator_args = list(set(has_ps_args) & set(coordinator_args))
516 517 518 519
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
520
    elif len(has_collective_args) > 0:
521 522 523
        logger.info(
            "Run collective mode. gpu arguments:{}, cuda count:{}".format(
                has_collective_args, accelerators))
524
        return DistributeMode.COLLECTIVE
525
    else:
526
        if not fluid.core.is_compiled_with_cuda(
Z
zn 已提交
527 528
        ) and not fluid.core.is_compiled_with_xpu(
        ) and not fluid.core.is_compiled_with_mlu():
X
xiongkun 已提交
529 530
            if args.servers:
                logger.warning(
Z
zn 已提交
531
                    "Not found distinct arguments and not compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
532
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
533 534 535
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
536 537
        else:
            logger.warning(
Z
zn 已提交
538
                "Not found distinct arguments and compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
539
                "Default use collective mode")
540
            return DistributeMode.COLLECTIVE
541 542 543


def launch():
G
Guoxia Wang 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
                             training_script ...    


    Base Parameters:
G
Guoxia Wang 已提交
560
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
561

G
Guoxia Wang 已提交
562
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
563

G
Guoxia Wang 已提交
564
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
565

G
Guoxia Wang 已提交
566
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
567 568 569

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
        
G
Guoxia Wang 已提交
570
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
G
Guoxia Wang 已提交
571 572 573
        
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

Z
zn 已提交
574 575 576 577
        - ``--mlus``: It's for mlu training. e.g., ``--mlus=0,1,2,3`` will launch four training processes each bound to one mlu.

        - ``--selected_mlus``: mlus aliases, recommend to use ``--mlus``.

578
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
G
Guoxia Wang 已提交
579

G
Guoxia Wang 已提交
580
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
581 582

    Collective Parameters:
G
Guoxia Wang 已提交
583
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
584 585

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
586
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
587

G
Guoxia Wang 已提交
588
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
589

590
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
591 592 593 594 595

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

596 597 598
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
599 600 601 602

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
603
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
604

G
Guoxia Wang 已提交
605
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
606

G
Guoxia Wang 已提交
607
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
608 609 610 611 612 613 614 615 616 617 618

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
G
Guoxia Wang 已提交
619
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
620 621 622 623 624 625 626

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
627 628 629
            # The parameters of --gpus and --ips must be consistent in each node.

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 
G
Guoxia Wang 已提交
630 631 632 633 634 635 636 637 638 639 640 641

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
642
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
G
Guoxia Wang 已提交
643 644 645 646 647 648 649
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
650
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
664
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
G
Guoxia Wang 已提交
665 666 667 668 669 670 671 672
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
673
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
689
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
G
Guoxia Wang 已提交
690 691 692 693 694 695 696 697
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
698
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
        
    """

718 719 720 721
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
722
    if args.backend == 'auto':
723 724
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
725 726 727 728 729
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

Z
zn 已提交
730
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
731

X
xiongkun 已提交
732 733
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
734

735 736 737
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
738 739 740
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
741

K
kuizhiqing 已提交
742 743
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
744
    else:
K
kuizhiqing 已提交
745
        launch_ps(args, distribute_mode)
746 747 748 749


if __name__ == "__main__":
    launch()