launch.py 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56
                your_training_py (arg1 arg2 and all others)
"""

57
import shutil
58
import sys
59
import tempfile
60 61 62
import os
import time
import copy
63
import pathlib
64 65
from argparse import ArgumentParser, REMAINDER
import paddle.fluid as fluid
66
from paddle.distributed.fleet import launch_utils
67 68 69 70 71
from paddle.distributed.fleet.launch_utils import (
    get_host_name_ip, find_free_ports, logger, get_cluster, DeviceMode,
    start_local_trainers, direct_start, watch_local_trainers,
    terminate_local_procs, DistributeMode, ParameterServerLauncher, get_logger,
    check_backend, block_windows_and_macos)
72 73
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
74

K
kuizhiqing 已提交
75
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
76

77 78
__all__ = []

79 80 81

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
82
    for arg, value in sorted(vars(args).items()):
83 84 85 86 87 88 89 90 91 92 93 94 95
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
96
    base_group = parser.add_argument_group("Base Parameters")
97

98 99
    base_group.add_argument(
        "--log_dir",
100
        type=str,
101
        default="log",
G
Guoxia Wang 已提交
102
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
103 104 105
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
106 107 108
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
109 110 111 112 113 114 115 116
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

117 118 119
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
120
        default=None,
121 122
        help="run mode of job, can be:collective/ps/ps-heter")

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
143

K
kuizhiqing 已提交
144 145 146 147 148 149 150 151 152 153
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

Z
zn 已提交
154 155 156 157 158 159 160 161 162 163
    if fluid.core.is_compiled_with_mlu():
        base_group.add_argument(
            "--mlus",
            type=str,
            default=None,
            help="It's for mlu training. For example: "
            "--mlus=\"0,1,2,3\" will launch four training processes each bound to one mlu."
        )
        base_group.add_argument("--selected_mlus", dest="mlus")

164 165 166 167 168 169
    base_group.add_argument("training_script",
                            type=str,
                            help="The full path to the single GPU training "
                            "program/script to be launched in parallel, "
                            "followed by all the arguments for the "
                            "training script")
170

171 172 173 174 175 176 177 178 179 180
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
181
    collective_group.add_argument(
182 183 184 185 186 187 188 189 190 191 192
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to represent the cluster topology information for auto parallel.")
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to map processes to machines for auto parallel.")
193 194 195 196 197
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
198 199 200

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
201 202 203 204 205 206 207 208
    ps_group.add_argument("--servers",
                          type=str,
                          default="",
                          help="User defined servers ip:port")
    ps_group.add_argument("--workers",
                          type=str,
                          default="",
                          help="User defined workers ip:port")
209 210 211 212
    ps_group.add_argument("--coordinators",
                          type=str,
                          default="",
                          help="User defined coordinators ip:port")
213 214 215 216
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
217
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
218 219 220 221
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
222
        help="User defined heter devices in each stage cpu;gpu;cpu")
223 224

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
225 226 227
    ps_group.add_argument("--coordinator_num",
                          type=int,
                          help="number of coordinators")
228
    ps_group.add_argument("--server_num", type=int, help="number of servers")
229 230 231
    ps_group.add_argument("--heter_worker_num",
                          type=str,
                          help="number of heter_workers in each stage 1;2;3")
232
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
233

234 235
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
236 237 238 239 240 241
    elastic_group.add_argument("--elastic_server",
                               type=str,
                               help="etcd server host:port")
    elastic_group.add_argument("--elastic_pre_hook",
                               type=str,
                               help="elastic pre_hook shell cmd")
242

243 244 245
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
246 247 248 249 250 251 252
    elastic_group.add_argument("--host",
                               type=str,
                               help="bind host, default to POD_IP env")
    elastic_group.add_argument("--force",
                               type=bool,
                               default=False,
                               help="update np force")
253

K
kuizhiqing 已提交
254 255
    known_args, _ = parser.parse_known_args()
    return known_args
256 257


258
def get_cluster_from_args(args, device_mode, devices_per_proc):
259 260 261 262
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
263 264 265 266
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
267

268
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
269
        % (node_ip, node_ips)
270 271
    node_rank = node_ips.index(node_ip)

272
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
273 274 275 276 277
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
278
        free_ports = find_free_ports(len(devices_per_proc))
279 280
        if free_ports is not None:
            free_ports = list(free_ports)
G
gongweibao 已提交
281
            logger.info("find free ports:{}".format(free_ports))
282 283 284
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
285
            start_port = int(os.environ.get('FLAGS_START_PORT'))
286

287 288 289
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
290

291 292 293
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
294 295
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
296 297


X
xiongkun 已提交
298 299 300 301 302 303 304 305 306 307 308 309
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


310
def get_cluster_info(args):
K
kuizhiqing 已提交
311
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
312
    if args.backend == 'gloo': cpuonly_check(args)
313 314 315 316 317
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
K
kuizhiqing 已提交
318 319 320 321
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

322 323
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
324 325 326 327 328 329
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
330
    # auto mapping between processes and devices for auto-parallel
331
    if args.enable_auto_mapping == True:
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        assert args.cluster_topo_path is not None, \
            "The cluster topology must be provied when enabling auto mapping."
        rank_mapping_path = args.rank_mapping_path or os.getenv(
            "PADDLE_RANK_MAPPING_PATH")
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))
            cwd = pathlib.Path().resolve()
            rank_mapping_path = os.path.join(cwd,
                                             "auto_parallel_rank_mapping.json")
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode)
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode)
K
kuizhiqing 已提交
363
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
364 365 366
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, device_mode,
                                                     devices_per_proc,
                                                     start_port)
K
kuizhiqing 已提交
367 368
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
369
        # for ascend
370 371 372 373
        cluster, pod = ascend_utils.get_cloud_cluster(rank_table_file=os.getenv(
            "RANK_TABLE_FILE", None),
                                                      device_mode=device_mode,
                                                      start_port=start_port)
K
kuizhiqing 已提交
374 375 376 377 378
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
379 380
    return cluster, pod

381

382
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
383 384 385 386
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
387
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
388
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
389 390 391 392 393 394 395
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
396

397 398 399 400 401 402
    procs = start_local_trainers(cluster,
                                 pod,
                                 training_script=args.training_script,
                                 training_script_args=args.training_script_args,
                                 log_dir=args.log_dir,
                                 envs=global_envs)
K
kuizhiqing 已提交
403 404 405

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
406

K
kuizhiqing 已提交
407
    while True:
K
kuizhiqing 已提交
408 409
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
410

K
kuizhiqing 已提交
411 412 413 414
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
415

K
kuizhiqing 已提交
416 417 418 419 420 421
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
422

423 424
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
425

426

427 428 429 430 431 432 433
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
434 435 436 437 438
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
439 440 441 442 443 444

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


445 446 447 448 449 450 451 452
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
Z
zn 已提交
453 454
    elif fluid.core.is_compiled_with_mlu():
        args.backend = 'cncl'
455 456 457 458
    else:
        args.backend = 'gloo'


459
def which_distributed_mode(args):
460
    infer_backend(args)  # modify the args.backend
461 462 463 464 465 466 467 468 469 470
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

471
    ps_args = [
472
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
473
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
474
    ]
475
    collective_args = ['--ips']
476

477
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
478

479 480
    coordinator_args = ["--coordinator_num", "--coordinators"]

481 482 483 484 485 486 487
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
488 489 490 491 492 493

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

494
    if fluid.core.is_compiled_with_cuda():
495
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
496 497
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
498
    elif fluid.core.is_compiled_with_xpu():
499
        accelerators = fluid.core.get_xpu_device_count()
Z
zn 已提交
500 501
    elif fluid.core.is_compiled_with_mlu():
        accelerators = fluid.core.get_mlu_device_count()
502
    else:
503
        accelerators = 0
504

505 506
    if len(has_ps_args) > 0:
        logger.info(
507 508
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}"
            .format(has_ps_args, accelerators))
509
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
510
        has_coordinator_args = list(set(has_ps_args) & set(coordinator_args))
511 512 513 514
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
515
    elif len(has_collective_args) > 0:
516 517 518
        logger.info(
            "Run collective mode. gpu arguments:{}, cuda count:{}".format(
                has_collective_args, accelerators))
519
        return DistributeMode.COLLECTIVE
520
    else:
521
        if not fluid.core.is_compiled_with_cuda(
Z
zn 已提交
522 523
        ) and not fluid.core.is_compiled_with_xpu(
        ) and not fluid.core.is_compiled_with_mlu():
X
xiongkun 已提交
524 525
            if args.servers:
                logger.warning(
Z
zn 已提交
526
                    "Not found distinct arguments and not compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
527
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
528 529 530
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
531 532
        else:
            logger.warning(
Z
zn 已提交
533
                "Not found distinct arguments and compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
534
                "Default use collective mode")
535
            return DistributeMode.COLLECTIVE
536 537 538


def launch():
G
Guoxia Wang 已提交
539 540
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
541

G
Guoxia Wang 已提交
542 543 544 545 546 547 548 549 550
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
551
                             training_script ...
G
Guoxia Wang 已提交
552 553 554


    Base Parameters:
G
Guoxia Wang 已提交
555
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
556

G
Guoxia Wang 已提交
557
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
558

G
Guoxia Wang 已提交
559
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
560

G
Guoxia Wang 已提交
561
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
562 563

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
564

G
Guoxia Wang 已提交
565
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
566

G
Guoxia Wang 已提交
567 568
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

Z
zn 已提交
569 570 571 572
        - ``--mlus``: It's for mlu training. e.g., ``--mlus=0,1,2,3`` will launch four training processes each bound to one mlu.

        - ``--selected_mlus``: mlus aliases, recommend to use ``--mlus``.

573
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
G
Guoxia Wang 已提交
574

G
Guoxia Wang 已提交
575
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
576 577

    Collective Parameters:
G
Guoxia Wang 已提交
578
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
579 580

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
581
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
582

G
Guoxia Wang 已提交
583
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
584

585
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
586 587 588 589 590

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

591
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
592

593
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
594 595 596 597

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
598
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
599

G
Guoxia Wang 已提交
600
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
601

G
Guoxia Wang 已提交
602
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
603 604 605 606 607 608 609 610 611 612

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
613

G
Guoxia Wang 已提交
614
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
615 616

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
617

G
Guoxia Wang 已提交
618 619 620 621
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
622 623
            # The parameters of --gpus and --ips must be consistent in each node.

624
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17
G
Guoxia Wang 已提交
625 626 627 628 629 630 631

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
632

G
Guoxia Wang 已提交
633 634 635 636
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
637
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
638

G
Guoxia Wang 已提交
639
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
640

G
Guoxia Wang 已提交
641 642 643 644
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
645
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
659
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
660

G
Guoxia Wang 已提交
661 662
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
663

G
Guoxia Wang 已提交
664 665 666 667
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
668
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
684
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
685

G
Guoxia Wang 已提交
686 687
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
688

G
Guoxia Wang 已提交
689 690 691 692
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
693
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
710

G
Guoxia Wang 已提交
711 712
    """

713 714 715 716
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
717
    if args.backend == 'auto':
718 719
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
720 721 722 723 724
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

Z
zn 已提交
725
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
726

X
xiongkun 已提交
727 728
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
729

730 731 732
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
733 734 735
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
736

K
kuizhiqing 已提交
737 738
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
739
    else:
K
kuizhiqing 已提交
740
        launch_ps(args, distribute_mode)
741 742 743 744


if __name__ == "__main__":
    launch()