Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
79cbc8ea
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
79cbc8ea
编写于
6月 21, 2021
作者:
K
kuizhiqing
提交者:
GitHub
6月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ELASTIC 1 : fault tolerance (#33369)
* elastic etcd ready
上级
4b9430a1
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
435 addition
and
60 deletion
+435
-60
python/paddle/distributed/fleet/elastic.py
python/paddle/distributed/fleet/elastic.py
+312
-0
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+123
-60
未找到文件。
python/paddle/distributed/fleet/elastic.py
0 → 100644
浏览文件 @
79cbc8ea
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
time
import
socket
import
os
import
six
import
logging
import
signal
logging
.
basicConfig
(
level
=
os
.
environ
.
get
(
'LOGLEVEL'
,
'INFO'
).
upper
())
logger
=
logging
.
getLogger
(
"ELASTIC"
)
ELASTIC_EXIT_CODE
=
101
class
ElasticStatus
:
COMPLETED
=
"completed"
ERROR
=
"error"
HOLD
=
"hold"
RESTART
=
"restart"
EXIT
=
"exit"
class
LauncherInterface
(
object
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
procs
=
[]
def
_terminate_procs
(
self
):
for
p
in
self
.
procs
:
if
p
.
proc
.
poll
()
is
None
:
p
.
proc
.
terminate
()
if
p
.
log_fn
:
p
.
log_fn
.
close
()
logger
.
info
(
"terminate process id:{}"
.
format
(
p
.
proc
.
pid
))
for
step
in
range
(
0
,
50
):
alive
=
False
for
p
in
self
.
procs
:
if
p
.
proc
.
poll
()
is
None
:
# not termniate
os
.
kill
(
p
.
proc
.
pid
,
signal
.
SIGKILL
)
alive
=
True
if
not
alive
:
logger
.
info
(
"terminate all the procs"
)
return
True
time
.
sleep
(
1
)
return
False
def
_check_procs
(
self
):
alive
=
False
result
=
None
for
p
in
self
.
procs
:
ret
=
p
.
proc
.
poll
()
if
ret
is
None
:
alive
=
True
elif
ret
!=
0
:
logger
.
error
(
"ERROR rank {} error with code {}"
.
format
(
p
.
rank
,
ret
))
result
=
ret
if
not
alive
and
result
is
None
:
return
0
else
:
return
result
def
launch
(
self
):
raise
NotImplementedError
def
stop
(
self
):
raise
NotImplementedError
def
watch
(
self
):
raise
NotImplementedError
class
ElasticManager
(
object
):
def
__init__
(
self
,
args
):
self
.
args
=
args
server
=
args
.
elastic_server
or
os
.
getenv
(
'PADDLE_ELASTIC_SERVER'
)
name
=
args
.
job_id
or
os
.
getenv
(
'PADDLE_ELASTIC_JOB_ID'
)
np
=
args
.
np
or
int
(
os
.
getenv
(
'PADDLE_ELASTIC_NP'
,
0
))
host
=
args
.
host
or
os
.
getenv
(
'POD_IP'
)
scale
=
args
.
scale
or
int
(
os
.
getenv
(
'PADDLE_ELASTIC_SCALE'
,
0
))
force
=
args
.
force
or
os
.
getenv
(
'PADDLE_ELASTIC_FORCE'
)
self
.
endpoints
=
os
.
getenv
(
'DISTRIBUTED_TRAINER_ENDPOINTS'
,
''
)
self
.
trainers
=
os
.
getenv
(
'PADDLE_TRAINERS'
,
''
)
self
.
elastic_level
=
int
(
os
.
getenv
(
'PADDLE_ELASTIC_FAULT_TOLERANC_LEVEL'
,
1
))
#elastic_timeout = os.getenv('PADDLE_ELASTIC_TIMEOUT',1)
logger
.
debug
(
'init with server {} host {}'
.
format
(
server
,
host
))
self
.
hosts
=
[]
self
.
stopped
=
False
self
.
sigint
=
0
if
not
server
or
':'
not
in
server
or
not
name
or
not
np
:
logger
.
info
(
'Elastic is not enabled with server {} name {} and np {}'
.
format
(
server
,
name
,
np
))
self
.
enable
=
False
return
else
:
self
.
enable
=
True
import
etcd3
srv
,
port
=
server
.
split
(
':'
)
self
.
etcd
=
etcd3
.
client
(
host
=
srv
,
port
=
port
)
self
.
host
=
host
if
host
else
self
.
_get_host
()
# etcd data
self
.
prefix
=
"/paddle/"
+
name
self
.
node_prefix
=
self
.
prefix
+
'/nodes/'
self
.
np_path
=
self
.
prefix
+
'/np'
self
.
endpoints_path
=
self
.
prefix
+
'/endpoints'
self
.
host_path
=
'{}{}'
.
format
(
self
.
node_prefix
,
time
.
time
())
self
.
np
=
np
+
scale
'''
0 group mode, be aware of healthy status of other workers
1 decouple mode, check own status only
'''
self
.
etcd
.
put
(
self
.
prefix
,
b
'0'
)
# host
# register self host to etcd
# register watch to reset host after host been deleted
self
.
etcd
.
delete_prefix
(
self
.
node_prefix
)
def
host_call_back
(
event
):
if
self
.
etcd
.
get
(
self
.
host_path
)[
0
]
==
None
:
# ensure unmatch trigger
logger
.
info
(
'register host again {}'
.
format
(
self
.
host
))
time
.
sleep
(
5
)
self
.
etcd
.
put
(
self
.
host_path
,
six
.
b
(
self
.
host
))
host_watch
=
self
.
etcd
.
add_watch_callback
(
self
.
host_path
,
host_call_back
)
self
.
etcd
.
put
(
self
.
host_path
,
six
.
b
(
self
.
host
))
# np describes the exact number of nodes to run the job
inp
=
int
(
self
.
etcd
.
get
(
self
.
np_path
)[
0
]
or
0
)
if
scale
==
0
and
not
force
:
assert
inp
==
np
or
inp
==
0
,
"np {} is not consistent with np in etcd {}"
.
format
(
np
,
inp
)
else
:
assert
inp
==
np
or
inp
==
self
.
np
,
"np {} scale to {} by {} is not allowed"
.
format
(
inp
,
self
.
np
,
scale
)
self
.
etcd
.
put
(
self
.
np_path
,
six
.
b
(
"%d"
%
(
self
.
np
)))
def
np_call_back
(
event
):
gnp
=
int
(
self
.
etcd
.
get
(
self
.
np_path
)[
0
])
if
gnp
!=
self
.
np
:
logger
.
info
(
"scale np {} to {} "
.
format
(
self
.
np
,
gnp
))
self
.
np
=
gnp
np_watch
=
self
.
etcd
.
add_watch_callback
(
self
.
np_path
,
np_call_back
)
# endpoints handle DISTRIBUTED_TRAINER_ENDPOINTS and PADDLE_TRAINERS
self
.
etcd
.
put
(
self
.
endpoints_path
,
six
.
b
(
'{}|{}'
.
format
(
self
.
endpoints
,
self
.
trainers
)))
def
endpoints_call_back
(
event
):
if
not
self
.
endpoints
:
return
edps
=
six
.
ensure_str
(
self
.
etcd
.
get
(
self
.
endpoints_path
)[
0
]
or
''
)
self
.
endpoints
,
self
.
trainers
=
edps
.
split
(
'|'
)
logger
.
info
(
"set DISTRIBUTED_TRAINER_ENDPOINTS {} "
.
format
(
self
.
endpoints
))
logger
.
info
(
"set PADDLE_TRAINERS {} "
.
format
(
self
.
trainers
))
endpoints_watch
=
self
.
etcd
.
add_watch_callback
(
self
.
endpoints_path
,
endpoints_call_back
)
self
.
watches
=
[
host_watch
,
np_watch
,
endpoints_watch
]
def
exit
(
self
,
completed
=
False
):
logger
.
info
(
'manager exist completed {}'
.
format
(
completed
))
if
not
self
.
enable
:
return
if
completed
:
self
.
etcd
.
put
(
self
.
prefix
,
b
'1'
)
for
watch
in
self
.
watches
:
self
.
etcd
.
cancel_watch
(
watch
)
self
.
etcd
.
delete
(
self
.
host_path
)
hosts
=
[
i
for
i
in
self
.
etcd
.
get_prefix
(
self
.
node_prefix
)]
if
len
(
hosts
)
==
0
:
self
.
etcd
.
delete_prefix
(
self
.
prefix
)
def
_get_host
(
self
):
try
:
return
socket
.
gethostbyname
(
socket
.
getfqdn
(
socket
.
gethostname
()))
except
:
return
'127.0.0.1'
def
_completed
(
self
):
if
not
self
.
enable
:
return
True
return
int
(
self
.
etcd
.
get
(
self
.
prefix
)[
0
])
==
1
def
_match
(
self
):
self
.
hosts
=
[
six
.
ensure_str
(
i
[
0
])
for
i
in
self
.
etcd
.
get_prefix
(
self
.
node_prefix
)
]
if
len
(
self
.
hosts
)
==
self
.
np
:
return
True
else
:
return
False
def
_update_hosts
(
self
):
assert
len
(
self
.
hosts
)
!=
0
,
'hosts empty'
if
self
.
host
in
self
.
endpoints
:
os
.
environ
[
'DISTRIBUTED_TRAINER_ENDPOINTS'
]
=
self
.
endpoints
os
.
environ
[
'PADDLE_TRAINERS'
]
=
self
.
trainers
logger
.
info
(
"update env DISTRIBUTED_TRAINER_ENDPOINTS {} "
.
format
(
self
.
endpoints
))
logger
.
info
(
"update env PADDLE_TRAINERS {} "
.
format
(
self
.
trainers
))
return
rank
=
int
(
os
.
getenv
(
'PADDLE_TRAINER_ID'
,
-
1
))
idx
=
self
.
hosts
.
index
(
self
.
host
)
# swap if self.host not in the right position
if
rank
>=
0
:
self
.
hosts
[
idx
]
=
self
.
hosts
[
rank
]
self
.
hosts
[
rank
]
=
self
.
host
else
:
os
.
environ
[
'PADDLE_TRAINER_ID'
]
=
'{}'
.
format
(
idx
)
hosts
=
','
.
join
(
self
.
hosts
)
self
.
args
.
ips
=
hosts
os
.
environ
[
'PADDLE_TRAINERS'
]
=
hosts
def
wait
(
self
):
if
not
self
.
enable
:
return
while
not
self
.
stopped
:
if
self
.
_match
():
logger
.
info
(
'ready with hosts {}'
.
format
(
self
.
hosts
))
self
.
_update_hosts
()
return
logger
.
info
(
'not ready for np {} with hosts {}'
.
format
(
self
.
np
,
self
.
hosts
))
time
.
sleep
(
3
)
return
def
run
(
self
,
launcher
):
if
self
.
stopped
:
return
self
.
launcher
=
launcher
(
self
.
args
)
self
.
launcher
.
launch
()
def
watch
(
self
):
while
not
self
.
stopped
:
ret
=
self
.
launcher
.
watch
()
if
ret
is
not
None
:
# self terminated
logger
.
info
(
'job exit with code {}'
.
format
(
ret
))
# process is completed if ret >= 0 or error else
completed
=
True
if
ret
==
0
else
False
self
.
launcher
.
stop
()
self
.
exit
(
completed
=
completed
)
if
completed
:
return
ElasticStatus
.
COMPLETED
if
self
.
elastic_level
==
1
:
return
ElasticStatus
.
RESTART
else
:
return
ElasticStatus
.
ERROR
if
not
self
.
_completed
()
and
not
self
.
_match
():
self
.
launcher
.
stop
()
return
ElasticStatus
.
HOLD
time
.
sleep
(
3
)
return
ElasticStatus
.
EXIT
def
signal_handler
(
self
,
sigint
,
frame
):
if
self
.
enable
:
self
.
exit
()
self
.
sigint
=
sigint
self
.
stopped
=
True
python/paddle/distributed/fleet/launch.py
浏览文件 @
79cbc8ea
...
...
@@ -69,12 +69,18 @@ from argparse import ArgumentParser, REMAINDER
import
paddle
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet
import
launch_utils
import
signal
# TODO(danleifeng): Don't import * from a module
from
paddle.distributed.fleet.launch_utils
import
*
import
paddle.distributed.fleet.cloud_utils
as
cloud_utils
import
paddle.distributed.fleet.ascend_utils
as
ascend_utils
from
paddle.distributed.fleet.elastic
import
ElasticManager
from
paddle.distributed.fleet.elastic
import
LauncherInterface
from
paddle.distributed.fleet.elastic
import
ElasticStatus
from
paddle.distributed.fleet.elastic
import
ELASTIC_EXIT_CODE
__all__
=
[]
...
...
@@ -175,6 +181,18 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
"--heter_worker_num"
,
type
=
int
,
help
=
"number of heter_workers"
)
ps_group
.
add_argument
(
"--http_port"
,
type
=
int
,
help
=
"Gloo http Port"
)
# parameter elastic mode
elastic_group
=
parser
.
add_argument_group
(
"Elastic Parameters"
)
elastic_group
.
add_argument
(
"--elastic_server"
,
type
=
str
,
help
=
"etcd server host:port"
)
elastic_group
.
add_argument
(
"--job_id"
,
type
=
str
,
help
=
"job unique id"
)
elastic_group
.
add_argument
(
"--np"
,
type
=
int
,
help
=
"job pod/node number"
)
elastic_group
.
add_argument
(
"--scale"
,
type
=
int
,
default
=
0
,
help
=
"scale np"
)
elastic_group
.
add_argument
(
"--host"
,
type
=
str
,
help
=
"bind host, default to POD_IP env"
)
elastic_group
.
add_argument
(
"--force"
,
type
=
bool
,
default
=
False
,
help
=
"update np force"
)
return
parser
.
parse_args
()
...
...
@@ -183,7 +201,10 @@ def get_cluster_from_args(args, device_mode, devices_per_proc):
if
len
(
node_ips
)
==
1
:
node_ip
=
node_ips
[
0
]
else
:
_
,
node_ip
=
get_host_name_ip
()
if
args
.
host
:
node_ip
=
args
.
host
else
:
_
,
node_ip
=
get_host_name_ip
()
assert
node_ip
in
node_ips
,
"Can't find your local ip {%s} in node_ips: {%s}"
\
%
(
node_ip
,
node_ips
)
...
...
@@ -214,65 +235,75 @@ def get_cluster_from_args(args, device_mode, devices_per_proc):
devices_per_proc
)
def
launch_collective
(
args
):
# parse arguments, used for cloud-single-machine and local
(
device_mode
,
devices_per_proc
)
=
launch_utils
.
get_device_proc_info
(
args
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} mode:{} devices:{}"
.
format
(
trainers_num
,
device_mode
,
devices_per_proc
))
cluster
=
None
pod
=
None
start_port
=
6170
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# for ascend
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
gloo_rendezvous_dir
=
tempfile
.
mkdtemp
()
# add gloo env
global_envs
[
"PADDLE_WITH_GLOO"
]
=
str
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
global_envs
[
"PADDLE_GLOO_RENDEZVOUS"
]
=
"3"
global_envs
[
"PADDLE_GLOO_FS_PATH"
]
=
gloo_rendezvous_dir
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
,
envs
=
global_envs
)
for
idx
,
proc
in
enumerate
(
procs
):
print
(
"launch proc_id:{} idx:{}"
.
format
(
proc
.
proc
.
pid
,
idx
))
class
CollectiveLauncher
(
LauncherInterface
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
procs
=
[]
while
True
:
alive
=
watch_local_trainers
(
procs
,
cluster
.
trainers_nranks
())
def
launch
(
self
):
logger
.
info
(
"collective lauchner launch ..."
)
args
=
self
.
args
# parse arguments, used for cloud-single-machine and local
(
device_mode
,
devices_per_proc
)
=
launch_utils
.
get_device_proc_info
(
args
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} mode:{} devices:{}"
.
format
(
trainers_num
,
device_mode
,
devices_per_proc
))
if
not
alive
:
logger
.
info
(
"Local processes completed."
)
logger
.
debug
(
"POD info:{}"
.
format
(
pod
))
break
cluster
=
None
pod
=
None
time
.
sleep
(
3
)
if
os
.
path
.
exists
(
gloo_rendezvous_dir
):
shutil
.
rmtree
(
gloo_rendezvous_dir
)
start_port
=
6170
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# for ascend
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
self
.
gloo_rendezvous_dir
=
tempfile
.
mkdtemp
()
# add gloo env
global_envs
[
"PADDLE_WITH_GLOO"
]
=
str
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
global_envs
[
"PADDLE_GLOO_RENDEZVOUS"
]
=
"3"
global_envs
[
"PADDLE_GLOO_FS_PATH"
]
=
self
.
gloo_rendezvous_dir
self
.
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
,
envs
=
global_envs
)
for
idx
,
proc
in
enumerate
(
self
.
procs
):
logger
.
info
(
"launch proc_id:{} idx:{}"
.
format
(
proc
.
proc
.
pid
,
idx
))
def
stop
(
self
):
logger
.
info
(
"collective lauchner stop ..."
)
self
.
_terminate_procs
()
if
os
.
path
.
exists
(
self
.
gloo_rendezvous_dir
):
shutil
.
rmtree
(
self
.
gloo_rendezvous_dir
)
def
watch
(
self
):
logger
.
debug
(
"collective lauchner watch ..."
)
for
p
in
self
.
procs
:
if
p
.
log_fn
and
p
.
local_rank
==
0
:
pull_worker_log
(
p
)
ret
=
self
.
_check_procs
()
return
ret
def
launch_ps
(
args
,
distribute_mode
):
...
...
@@ -367,10 +398,42 @@ def launch():
_print_arguments
(
args
)
distribute_mode
=
which_distributed_mode
(
args
)
if
distribute_mode
==
DistributeMode
.
COLLECTIVE
:
launch_collective
(
args
)
else
:
# TODO(kuizhiqing) support ps later
if
not
distribute_mode
==
DistributeMode
.
COLLECTIVE
:
launch_ps
(
args
,
distribute_mode
)
return
elastic
=
ElasticManager
(
args
)
signal
.
signal
(
signal
.
SIGTERM
,
elastic
.
signal_handler
)
signal
.
signal
(
signal
.
SIGABRT
,
elastic
.
signal_handler
)
signal
.
signal
(
signal
.
SIGINT
,
elastic
.
signal_handler
)
while
True
:
# wait for all nodes ready to run
elastic
.
wait
()
# run self with specified launcher
elastic
.
run
(
CollectiveLauncher
)
# keep wathing the health status of self and being notified for other's failure
ret
=
elastic
.
watch
()
if
ret
==
ElasticStatus
.
COMPLETED
:
break
if
ret
==
ElasticStatus
.
HOLD
:
continue
if
ret
==
ElasticStatus
.
EXIT
:
break
if
ret
==
ElasticStatus
.
ERROR
:
sys
.
exit
(
3
)
if
ret
==
ElasticStatus
.
RESTART
:
sys
.
exit
(
ELASTIC_EXIT_CODE
)
if
int
(
elastic
.
sigint
)
>
0
:
sys
.
exit
(
128
+
int
(
elastic
.
sigint
))
else
:
sys
.
exit
(
0
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录