launch.py 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67
from sys import version
import subprocess
import os
import time
import six
import copy
68
import pathlib
69
import argparse
70 71 72
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
73
from paddle.distributed.fleet import launch_utils
74

75
# TODO(danleifeng): Don't import * from a module
76
from paddle.distributed.fleet.launch_utils import *
77 78
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
79

K
kuizhiqing 已提交
80
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
81

82 83
__all__ = []

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
101
    base_group = parser.add_argument_group("Base Parameters")
102

103 104
    base_group.add_argument(
        "--log_dir",
105
        type=str,
106
        default="log",
G
Guoxia Wang 已提交
107
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
108 109 110
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
111 112 113
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
114 115 116 117 118 119 120 121
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

122 123 124
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
125
        default=None,
126 127
        help="run mode of job, can be:collective/ps/ps-heter")

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
148

K
kuizhiqing 已提交
149 150 151 152 153 154 155 156 157 158
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

Z
zn 已提交
159 160 161 162 163 164 165 166 167 168
    if fluid.core.is_compiled_with_mlu():
        base_group.add_argument(
            "--mlus",
            type=str,
            default=None,
            help="It's for mlu training. For example: "
            "--mlus=\"0,1,2,3\" will launch four training processes each bound to one mlu."
        )
        base_group.add_argument("--selected_mlus", dest="mlus")

169
    base_group.add_argument(
170 171 172 173 174 175 176
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

177 178 179 180 181 182 183 184 185 186
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
187
    collective_group.add_argument(
188 189 190 191 192 193 194 195 196 197 198
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to represent the cluster topology information for auto parallel.")
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to map processes to machines for auto parallel.")
199 200 201 202 203
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
204 205 206 207 208 209 210 211 212 213 214

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
215
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
216 217 218 219
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
220
        help="User defined heter devices in each stage cpu;gpu;cpu")
221 222 223 224

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
225 226 227
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3")
228
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
229

230 231 232 233
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port")
234 235 236
    elastic_group.add_argument(
        "--elastic_pre_hook", type=str, help="elastic pre_hook shell cmd")

237 238 239 240 241 242 243 244
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env")
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force")

K
kuizhiqing 已提交
245 246
    known_args, _ = parser.parse_known_args()
    return known_args
247 248


249
def get_cluster_from_args(args, device_mode, devices_per_proc):
250 251 252 253
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
254 255 256 257
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
258

259
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
260
        % (node_ip, node_ips)
261 262
    node_rank = node_ips.index(node_ip)

263
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
264 265 266 267 268
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
269
        free_ports = find_free_ports(len(devices_per_proc))
270 271 272 273 274
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
275
            start_port = int(os.environ.get('FLAGS_START_PORT'))
276

277 278 279
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
280

281 282 283
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
284 285
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
286 287


X
xiongkun 已提交
288 289 290 291 292 293 294 295 296 297 298 299
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


300
def get_cluster_info(args):
K
kuizhiqing 已提交
301
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
302
    if args.backend == 'gloo': cpuonly_check(args)
303 304 305 306 307
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
K
kuizhiqing 已提交
308 309 310 311
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

312 313
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
314 315 316 317 318 319
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
320
    # auto mapping between processes and devices for auto-parallel
321
    if args.enable_auto_mapping == True:
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        assert args.cluster_topo_path is not None, \
            "The cluster topology must be provied when enabling auto mapping."
        rank_mapping_path = args.rank_mapping_path or os.getenv(
            "PADDLE_RANK_MAPPING_PATH")
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))
            cwd = pathlib.Path().resolve()
            rank_mapping_path = os.path.join(cwd,
                                             "auto_parallel_rank_mapping.json")
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode)
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode)
K
kuizhiqing 已提交
353 354 355 356 357
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
358
        # for ascend
K
kuizhiqing 已提交
359 360 361 362 363 364 365 366 367
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port)
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
368 369
    return cluster, pod

370

371
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
372 373 374 375
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
376
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
377
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
378 379 380 381 382 383 384
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
385 386 387 388 389 390 391 392 393 394 395

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs)

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
396

K
kuizhiqing 已提交
397
    while True:
K
kuizhiqing 已提交
398 399
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
400

K
kuizhiqing 已提交
401 402 403 404
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
405

K
kuizhiqing 已提交
406 407 408 409 410 411
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
412

413 414
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
415

416

417 418 419 420 421 422 423
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
424 425 426 427 428
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
429 430 431 432 433 434

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


435 436 437 438 439 440 441 442
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
Z
zn 已提交
443 444
    elif fluid.core.is_compiled_with_mlu():
        args.backend = 'cncl'
445 446 447 448
    else:
        args.backend = 'gloo'


449
def which_distributed_mode(args):
450
    infer_backend(args)  # modify the args.backend
451 452 453 454 455 456 457 458 459 460
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

461
    ps_args = [
462
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
463
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
464
    ]
465
    collective_args = ['--ips']
466

467
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
468 469 470 471 472 473 474 475

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
476 477 478 479 480 481

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

482
    if fluid.core.is_compiled_with_cuda():
483
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
484 485
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
486
    elif fluid.core.is_compiled_with_xpu():
487
        accelerators = fluid.core.get_xpu_device_count()
Z
zn 已提交
488 489
    elif fluid.core.is_compiled_with_mlu():
        accelerators = fluid.core.get_mlu_device_count()
490
    else:
491
        accelerators = 0
492

493 494
    if len(has_ps_args) > 0:
        logger.info(
495 496
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
497 498 499 500 501
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
502
    elif len(has_collective_args) > 0:
503 504
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
505
        return DistributeMode.COLLECTIVE
506
    else:
507
        if not fluid.core.is_compiled_with_cuda(
Z
zn 已提交
508 509
        ) and not fluid.core.is_compiled_with_xpu(
        ) and not fluid.core.is_compiled_with_mlu():
X
xiongkun 已提交
510 511
            if args.servers:
                logger.warning(
Z
zn 已提交
512
                    "Not found distinct arguments and not compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
513
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
514 515 516
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
517 518
        else:
            logger.warning(
Z
zn 已提交
519
                "Not found distinct arguments and compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
520
                "Default use collective mode")
521
            return DistributeMode.COLLECTIVE
522 523 524


def launch():
G
Guoxia Wang 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
                             training_script ...    


    Base Parameters:
G
Guoxia Wang 已提交
541
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
542

G
Guoxia Wang 已提交
543
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
544

G
Guoxia Wang 已提交
545
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
546

G
Guoxia Wang 已提交
547
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
548 549 550

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
        
G
Guoxia Wang 已提交
551
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
G
Guoxia Wang 已提交
552 553 554
        
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

Z
zn 已提交
555 556 557 558
        - ``--mlus``: It's for mlu training. e.g., ``--mlus=0,1,2,3`` will launch four training processes each bound to one mlu.

        - ``--selected_mlus``: mlus aliases, recommend to use ``--mlus``.

G
Guoxia Wang 已提交
559
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``traing.py``
G
Guoxia Wang 已提交
560

G
Guoxia Wang 已提交
561
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
562 563

    Collective Parameters:
G
Guoxia Wang 已提交
564
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
565 566

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
567
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
568

G
Guoxia Wang 已提交
569
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
570

571
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
572 573 574 575 576

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

577 578 579
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
580 581 582 583

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
584
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
585

G
Guoxia Wang 已提交
586
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
587

G
Guoxia Wang 已提交
588
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
589 590 591 592 593 594 595 596 597 598 599

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
G
Guoxia Wang 已提交
600
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
601 602 603 604 605 606 607

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
608 609 610
            # The parameters of --gpus and --ips must be consistent in each node.

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 
G
Guoxia Wang 已提交
611 612 613 614 615 616 617 618 619 620 621 622

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
623
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
G
Guoxia Wang 已提交
624 625 626 627 628 629 630
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
631
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
645
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
G
Guoxia Wang 已提交
646 647 648 649 650 651 652 653
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
654
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
670
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
G
Guoxia Wang 已提交
671 672 673 674 675 676 677 678
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
679
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
        
    """

699 700 701 702
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
703
    if args.backend == 'auto':
704 705
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
706 707 708 709 710
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

Z
zn 已提交
711
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
712

X
xiongkun 已提交
713 714
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
715

716 717 718
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
719 720 721
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
722

K
kuizhiqing 已提交
723 724
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
725
    else:
K
kuizhiqing 已提交
726
        launch_ps(args, distribute_mode)
727 728 729 730


if __name__ == "__main__":
    launch()