Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1f76a2f7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f76a2f7
编写于
8月 04, 2021
作者:
K
kuizhiqing
提交者:
GitHub
8月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Elastic as module (#34572)
上级
91be8769
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
297 addition
and
112 deletion
+297
-112
python/paddle/distributed/elastic.py
python/paddle/distributed/elastic.py
+6
-7
python/paddle/distributed/fleet/elastic/__init__.py
python/paddle/distributed/fleet/elastic/__init__.py
+74
-0
python/paddle/distributed/fleet/elastic/collective.py
python/paddle/distributed/fleet/elastic/collective.py
+93
-0
python/paddle/distributed/fleet/elastic/manager.py
python/paddle/distributed/fleet/elastic/manager.py
+0
-0
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+63
-105
python/paddle/fluid/tests/unittests/test_fleet_launch_elastic.sh
...paddle/fluid/tests/unittests/test_fleet_launch_elastic.sh
+60
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/distributed/elastic.py
浏览文件 @
1f76a2f7
...
...
@@ -37,6 +37,9 @@ class Command(object):
return
True
return
False
def
clean
(
self
):
self
.
etcd
.
delete_prefix
(
self
.
prefix
)
def
close
(
self
):
self
.
etcd
.
close
()
...
...
@@ -53,13 +56,6 @@ if __name__ == '__main__':
args
=
parser
.
parse_args
()
server
=
args
.
elastic_server
or
os
.
getenv
(
'PADDLE_ELASTIC_SERVER'
)
# compatible with kuberntes service discovery
if
not
server
and
os
.
getenv
(
'PADDLE_ELASTIC_ETCD_SERVICE_HOST'
)
and
os
.
getenv
(
'PADDLE_ELASTIC_ETCD_SERVICE_PORT'
):
server
=
'{}:{}'
.
format
(
os
.
getenv
(
'PADDLE_ELASTIC_ETCD_SERVICE_HOST'
),
os
.
getenv
(
'PADDLE_ELASTIC_ETCD_SERVICE_PORT'
))
name
=
args
.
job_id
or
os
.
getenv
(
'PADDLE_ELASTIC_JOB_ID'
)
np
=
args
.
np
or
int
(
os
.
getenv
(
'PADDLE_ELASTIC_NP'
,
0
))
...
...
@@ -69,6 +65,9 @@ if __name__ == '__main__':
if
args
.
action
==
"scale"
:
cmd
.
scale_np
(
np
)
if
args
.
action
==
"clean"
:
cmd
.
clean
()
print
(
"action {} done"
.
format
(
args
.
action
))
cmd
.
close
()
python/paddle/distributed/fleet/elastic/__init__.py
0 → 100644
浏览文件 @
1f76a2f7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
signal
import
os
,
sys
from
.manager
import
ElasticManager
from
.manager
import
ElasticStatus
from
.manager
import
ELASTIC_EXIT_CODE
from
.collective
import
CollectiveLauncher
from
paddle.distributed.fleet.launch_utils
import
DistributeMode
def
enable_elastic
(
args
,
distribute_mode
):
if
distribute_mode
!=
DistributeMode
.
COLLECTIVE
:
return
False
if
not
args
.
elastic_server
and
not
os
.
getenv
(
'PADDLE_ELASTIC_SERVER'
):
return
False
if
not
args
.
job_id
and
not
os
.
getenv
(
'PADDLE_ELASTIC_JOB_ID'
):
return
False
if
not
args
.
np
and
not
int
(
os
.
getenv
(
'PADDLE_ELASTIC_NP'
,
0
)):
return
False
return
True
def
launch_elastic
(
args
,
distribute_mode
):
elastic
=
ElasticManager
(
args
)
signal
.
signal
(
signal
.
SIGTERM
,
elastic
.
signal_handler
)
signal
.
signal
(
signal
.
SIGABRT
,
elastic
.
signal_handler
)
signal
.
signal
(
signal
.
SIGINT
,
elastic
.
signal_handler
)
while
True
:
# wait for all nodes ready to run
elastic
.
wait
()
# run self with specified launcher
elastic
.
run
(
CollectiveLauncher
)
# keep wathing the health status of self and being notified for other's failure
ret
=
elastic
.
watch
()
if
ret
==
ElasticStatus
.
COMPLETED
:
break
if
ret
==
ElasticStatus
.
HOLD
:
continue
if
ret
==
ElasticStatus
.
EXIT
:
break
if
ret
==
ElasticStatus
.
ERROR
:
sys
.
exit
(
3
)
if
ret
==
ElasticStatus
.
RESTART
:
sys
.
exit
(
ELASTIC_EXIT_CODE
)
if
int
(
elastic
.
sigint
)
>
0
:
sys
.
exit
(
128
+
int
(
elastic
.
sigint
))
else
:
sys
.
exit
(
0
)
python/paddle/distributed/fleet/elastic/collective.py
0 → 100644
浏览文件 @
1f76a2f7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.distributed.fleet
import
launch_utils
import
paddle.distributed.fleet.cloud_utils
as
cloud_utils
import
paddle.distributed.fleet.ascend_utils
as
ascend_utils
from
paddle.distributed.fleet.launch_utils
import
*
from
paddle.distributed.fleet.elastic.manager
import
LauncherInterface
class
CollectiveLauncher
(
LauncherInterface
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
procs
=
[]
def
launch
(
self
):
logger
.
info
(
"collective lauchner launch ..."
)
args
=
self
.
args
# parse arguments, used for cloud-single-machine and local
(
device_mode
,
devices_per_proc
)
=
launch_utils
.
get_device_proc_info
(
args
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} mode:{} devices:{}"
.
format
(
trainers_num
,
device_mode
,
devices_per_proc
))
cluster
=
None
pod
=
None
start_port
=
6170
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# for ascend
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
paddle
.
distributed
.
fleet
.
launch
.
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
self
.
gloo_rendezvous_dir
=
tempfile
.
mkdtemp
()
# add gloo env
global_envs
[
"PADDLE_WITH_GLOO"
]
=
str
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
global_envs
[
"PADDLE_GLOO_RENDEZVOUS"
]
=
"3"
global_envs
[
"PADDLE_GLOO_FS_PATH"
]
=
self
.
gloo_rendezvous_dir
self
.
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
,
envs
=
global_envs
)
for
idx
,
proc
in
enumerate
(
self
.
procs
):
logger
.
info
(
"launch proc_id:{} idx:{}"
.
format
(
proc
.
proc
.
pid
,
idx
))
def
stop
(
self
):
logger
.
info
(
"collective lauchner stop ..."
)
if
not
self
.
_terminate_procs
():
logger
.
error
(
"kill process failed"
)
if
os
.
path
.
exists
(
self
.
gloo_rendezvous_dir
):
shutil
.
rmtree
(
self
.
gloo_rendezvous_dir
)
def
watch
(
self
):
logger
.
debug
(
"collective lauchner watch ..."
)
for
p
in
self
.
procs
:
if
p
.
log_fn
and
p
.
local_rank
==
0
:
pull_worker_log
(
p
)
ret
=
self
.
_check_procs
()
return
ret
python/paddle/distributed/fleet/elastic.py
→
python/paddle/distributed/fleet/elastic
/manager
.py
浏览文件 @
1f76a2f7
文件已移动
python/paddle/distributed/fleet/launch.py
浏览文件 @
1f76a2f7
...
...
@@ -69,17 +69,13 @@ from argparse import ArgumentParser, REMAINDER
import
paddle
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet
import
launch_utils
import
signal
# TODO(danleifeng): Don't import * from a module
from
paddle.distributed.fleet.launch_utils
import
*
import
paddle.distributed.fleet.cloud_utils
as
cloud_utils
import
paddle.distributed.fleet.ascend_utils
as
ascend_utils
from
paddle.distributed.fleet.elastic
import
ElasticManager
from
paddle.distributed.fleet.elastic
import
LauncherInterface
from
paddle.distributed.fleet.elastic
import
ElasticStatus
from
paddle.distributed.fleet.elastic
import
ELASTIC_EXIT_CODE
from
paddle.distributed.fleet.elastic
import
enable_elastic
,
launch_elastic
__all__
=
[]
...
...
@@ -235,76 +231,65 @@ def get_cluster_from_args(args, device_mode, devices_per_proc):
devices_per_proc
)
class
CollectiveLauncher
(
LauncherInterface
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
procs
=
[]
def
launch_collective
(
args
):
# parse arguments, used for cloud-single-machine and local
(
device_mode
,
devices_per_proc
)
=
launch_utils
.
get_device_proc_info
(
args
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} mode:{} devices:{}"
.
format
(
trainers_num
,
device_mode
,
devices_per_proc
))
cluster
=
None
pod
=
None
start_port
=
6170
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# for ascend
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
gloo_rendezvous_dir
=
tempfile
.
mkdtemp
()
# add gloo env
global_envs
[
"PADDLE_WITH_GLOO"
]
=
str
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
global_envs
[
"PADDLE_GLOO_RENDEZVOUS"
]
=
"3"
global_envs
[
"PADDLE_GLOO_FS_PATH"
]
=
gloo_rendezvous_dir
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
,
envs
=
global_envs
)
for
idx
,
proc
in
enumerate
(
procs
):
print
(
"launch proc_id:{} idx:{}"
.
format
(
proc
.
proc
.
pid
,
idx
))
def
launch
(
self
):
logger
.
info
(
"collective lauchner launch ..."
)
args
=
self
.
args
# parse arguments, used for cloud-single-machine and local
(
device_mode
,
devices_per_proc
)
=
launch_utils
.
get_device_proc_info
(
args
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} mode:{} devices:{}"
.
format
(
trainers_num
,
device_mode
,
devices_per_proc
))
while
True
:
alive
=
watch_local_trainers
(
procs
,
cluster
.
trainers_nranks
())
cluster
=
None
pod
=
None
if
not
alive
:
logger
.
info
(
"Local processes completed."
)
logger
.
debug
(
"POD info:{}"
.
format
(
pod
))
break
start_port
=
6170
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# for ascend
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
self
.
gloo_rendezvous_dir
=
tempfile
.
mkdtemp
()
# add gloo env
global_envs
[
"PADDLE_WITH_GLOO"
]
=
str
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
global_envs
[
"PADDLE_GLOO_RENDEZVOUS"
]
=
"3"
global_envs
[
"PADDLE_GLOO_FS_PATH"
]
=
self
.
gloo_rendezvous_dir
self
.
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
,
envs
=
global_envs
)
for
idx
,
proc
in
enumerate
(
self
.
procs
):
logger
.
info
(
"launch proc_id:{} idx:{}"
.
format
(
proc
.
proc
.
pid
,
idx
))
def
stop
(
self
):
logger
.
info
(
"collective lauchner stop ..."
)
if
not
self
.
_terminate_procs
():
logger
.
error
(
"kill process failed"
)
if
os
.
path
.
exists
(
self
.
gloo_rendezvous_dir
):
shutil
.
rmtree
(
self
.
gloo_rendezvous_dir
)
def
watch
(
self
):
logger
.
debug
(
"collective lauchner watch ..."
)
for
p
in
self
.
procs
:
if
p
.
log_fn
and
p
.
local_rank
==
0
:
pull_worker_log
(
p
)
ret
=
self
.
_check_procs
()
return
ret
time
.
sleep
(
3
)
if
os
.
path
.
exists
(
gloo_rendezvous_dir
):
shutil
.
rmtree
(
gloo_rendezvous_dir
)
def
launch_ps
(
args
,
distribute_mode
):
...
...
@@ -399,42 +384,15 @@ def launch():
_print_arguments
(
args
)
distribute_mode
=
which_distributed_mode
(
args
)
# TODO(kuizhiqing) support ps later
if
not
distribute_mode
==
DistributeMode
.
COLLECTIVE
:
launch_ps
(
args
,
distribute_mode
)
return
elastic
=
ElasticManager
(
args
)
signal
.
signal
(
signal
.
SIGTERM
,
elastic
.
signal_handler
)
signal
.
signal
(
signal
.
SIGABRT
,
elastic
.
signal_handler
)
signal
.
signal
(
signal
.
SIGINT
,
elastic
.
signal_handler
)
while
True
:
# wait for all nodes ready to run
elastic
.
wait
()
# run self with specified launcher
elastic
.
run
(
CollectiveLauncher
)
# keep wathing the health status of self and being notified for other's failure
ret
=
elastic
.
watch
()
if
ret
==
ElasticStatus
.
COMPLETED
:
break
if
ret
==
ElasticStatus
.
HOLD
:
continue
if
ret
==
ElasticStatus
.
EXIT
:
break
if
ret
==
ElasticStatus
.
ERROR
:
sys
.
exit
(
3
)
if
ret
==
ElasticStatus
.
RESTART
:
sys
.
exit
(
ELASTIC_EXIT_CODE
)
if
enable_elastic
(
args
,
distribute_mode
):
launch_elastic
(
args
,
distribute_mode
)
return
if
int
(
elastic
.
sigint
)
>
0
:
sys
.
exit
(
128
+
int
(
elastic
.
sigint
)
)
if
distribute_mode
==
DistributeMode
.
COLLECTIVE
:
launch_collective
(
args
)
else
:
sys
.
exit
(
0
)
launch_ps
(
args
,
distribute_mode
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_fleet_launch_elastic.sh
浏览文件 @
1f76a2f7
...
...
@@ -17,6 +17,15 @@ echo "begin test elastic"
unset
GREP_OPTIONS
rm
-rf
log
pids
=
`
ps
-ef
|
grep
"python -m paddle.distributed.launch elastic_demo.[py]"
|
awk
'{print $2}'
`
if
[
-n
"
$pids
"
]
;
then
echo
$pids
| xargs
kill
-9
fi
pids
=
`
ps
-ef
|
grep
"/usr/bin/python -u elastic_demo.[py]"
|
awk
'{print $2}'
`
if
[
-n
"
$pids
"
]
;
then
echo
$pids
| xargs
kill
-9
fi
python
-m
pip
install
--no-cache-dir
etcd3
-i
https://mirror.baidu.com/pypi/simple
# common env
...
...
@@ -115,6 +124,8 @@ do
fi
done
>
$lw0
# rerun node 1
export
NVIDIA_VISIBLE_DEVICES
=
1
export
CUDA_VISIBLE_DEVICES
=
1
...
...
@@ -144,5 +155,54 @@ done
check_env
>
log_0.log
for
i
in
{
1..10
}
do
## kill with -9
kill
-9
$p0
sleep
1
if
[
`
ps
-p
$p0
|
wc
-l
`
==
"2"
]
;
then
echo
"force stop node 0 error"
exit
-1
else
echo
"force stop node 0 ok"
break
fi
done
>
$lw0
# rerun node 0
export
NVIDIA_VISIBLE_DEVICES
=
0
export
CUDA_VISIBLE_DEVICES
=
0
export
DISTRIBUTED_TRAINER_ENDPOINTS
=
10.10.10.10:8001,10.10.10.3:8001
export
PADDLE_TRAINERS
=
10.10.10.10,10.10.10.3
export
TRAINER_PORTS_NUM
=
1
export
POD_IP
=
10.10.10.10
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_TRAINERS_NUM
=
2
python
-m
paddle.distributed.launch elastic_demo.py &> log_0.log &
p0
=
$!
for
i
in
{
1..10
}
do
if
grep
"INFO:ELASTIC:ready with hosts"
log_1.log |
grep
-q
'10.10.10.10'
;
then
echo
"rerun node 0 ok"
break
else
sleep
1
fi
if
[
$i
-eq
10
]
;
then
echo
"rerun node 0 error"
exit
-1
fi
done
check_env
echo
"All check done"
sleep
3
kill
$p0
$p1
python/setup.py.in
浏览文件 @
1f76a2f7
...
...
@@ -149,6 +149,7 @@ packages=['paddle',
'paddle.incubate.operators',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.elastic',
'paddle.distributed.fleet.meta_optimizers',
'paddle.distributed.fleet.meta_optimizers.sharding',
'paddle.distributed.fleet.meta_optimizers.ascend',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录