launch.py 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67
from sys import version
import subprocess
import os
import time
import six
import copy
68
import pathlib
69
import argparse
70 71 72
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
73
from paddle.distributed.fleet import launch_utils
74

75
# TODO(danleifeng): Don't import * from a module
76
from paddle.distributed.fleet.launch_utils import *
77 78
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
79

K
kuizhiqing 已提交
80
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
81

82 83
__all__ = []

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
101
    base_group = parser.add_argument_group("Base Parameters")
102

103 104
    base_group.add_argument(
        "--log_dir",
105
        type=str,
106
        default="log",
G
Guoxia Wang 已提交
107
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
108 109 110
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
111 112 113
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
114 115 116 117 118 119 120 121
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

122 123 124
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
125
        default=None,
126 127
        help="run mode of job, can be:collective/ps/ps-heter")

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
148

K
kuizhiqing 已提交
149 150 151 152 153 154 155 156 157 158
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

159
    base_group.add_argument(
160 161 162 163 164 165 166
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

167 168 169 170 171 172 173 174 175 176
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
177
    collective_group.add_argument(
178 179 180 181 182 183 184 185 186 187 188
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to represent the cluster topology information for auto parallel.")
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to map processes to machines for auto parallel.")
189 190 191 192 193
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
194 195 196 197 198 199 200 201 202 203 204

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
205
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
206 207 208 209
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
210
        help="User defined heter devices in each stage cpu;gpu;cpu")
211 212 213 214

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
215 216 217
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3")
218
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
219

220 221 222 223
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port")
224 225 226
    elastic_group.add_argument(
        "--elastic_pre_hook", type=str, help="elastic pre_hook shell cmd")

227 228 229 230 231 232 233 234
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env")
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force")

235 236 237
    return parser.parse_args()


238
def get_cluster_from_args(args, device_mode, devices_per_proc):
239 240 241 242
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
243 244 245 246
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
247

248
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
249
        % (node_ip, node_ips)
250 251
    node_rank = node_ips.index(node_ip)

252
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
253 254 255 256 257
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
258
        free_ports = find_free_ports(len(devices_per_proc))
259 260 261 262 263
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
264
            start_port = int(os.environ.get('FLAGS_START_PORT'))
265

266 267 268
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
269

270 271 272
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
273 274
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
275 276


X
xiongkun 已提交
277 278 279 280 281 282 283 284 285 286 287 288
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


289
def get_cluster_info(args):
K
kuizhiqing 已提交
290
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
291
    if args.backend == 'gloo': cpuonly_check(args)
292 293 294 295 296
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
K
kuizhiqing 已提交
297 298 299 300
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

301 302
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
303 304 305 306 307 308
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
309
    # auto mapping between processes and devices for auto-parallel
310
    if args.enable_auto_mapping == True:
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        assert args.cluster_topo_path is not None, \
            "The cluster topology must be provied when enabling auto mapping."
        rank_mapping_path = args.rank_mapping_path or os.getenv(
            "PADDLE_RANK_MAPPING_PATH")
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))
            cwd = pathlib.Path().resolve()
            rank_mapping_path = os.path.join(cwd,
                                             "auto_parallel_rank_mapping.json")
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode)
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode)
K
kuizhiqing 已提交
342 343 344 345 346
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
347
        # for ascend
K
kuizhiqing 已提交
348 349 350 351 352 353 354 355 356
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port)
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
357 358
    return cluster, pod

359

360
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
361 362 363 364
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
365
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
366
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
367 368 369 370 371 372 373
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
374 375 376 377 378 379 380 381 382 383 384

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs)

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
385

K
kuizhiqing 已提交
386
    while True:
K
kuizhiqing 已提交
387 388
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
389

K
kuizhiqing 已提交
390 391 392 393
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
394

K
kuizhiqing 已提交
395 396 397 398 399 400
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
401

402 403
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
404

405

406 407 408 409 410 411 412
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
413 414 415 416 417
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
418 419 420 421 422 423

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


424 425 426 427 428 429 430 431 432 433 434 435
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
    else:
        args.backend = 'gloo'


436
def which_distributed_mode(args):
437
    infer_backend(args)  # modify the args.backend
438 439 440 441 442 443 444 445 446 447
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

448
    ps_args = [
449
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
450
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
451
    ]
452
    collective_args = ['--ips']
453

454
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
455 456 457 458 459 460 461 462

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
463 464 465 466 467 468

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

469
    if fluid.core.is_compiled_with_cuda():
470
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
471 472
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
473
    elif fluid.core.is_compiled_with_xpu():
474
        accelerators = fluid.core.get_xpu_device_count()
475
    else:
476
        accelerators = 0
477

478 479
    if len(has_ps_args) > 0:
        logger.info(
480 481
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
482 483 484 485 486
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
487
    elif len(has_collective_args) > 0:
488 489
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
490
        return DistributeMode.COLLECTIVE
491
    else:
492 493
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
X
xiongkun 已提交
494 495
            if args.servers:
                logger.warning(
K
kuizhiqing 已提交
496 497
                    "Not found distinct arguments and not compiled with cuda or xpu or npu. "
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
498 499 500
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
501 502
        else:
            logger.warning(
K
kuizhiqing 已提交
503 504
                "Not found distinct arguments and compiled with cuda or xpu or npu. "
                "Default use collective mode")
505
            return DistributeMode.COLLECTIVE
506 507 508


def launch():
G
Guoxia Wang 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
                             training_script ...    


    Base Parameters:
G
Guoxia Wang 已提交
525
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
526

G
Guoxia Wang 已提交
527
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
528

G
Guoxia Wang 已提交
529
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
530

G
Guoxia Wang 已提交
531
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
532 533 534

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
        
G
Guoxia Wang 已提交
535
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
G
Guoxia Wang 已提交
536 537 538
        
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

G
Guoxia Wang 已提交
539
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``traing.py``
G
Guoxia Wang 已提交
540

G
Guoxia Wang 已提交
541
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
542 543

    Collective Parameters:
G
Guoxia Wang 已提交
544
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
545 546

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
547
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
548

G
Guoxia Wang 已提交
549
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
550

551
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
552 553 554 555 556

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

557 558 559
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
560 561 562 563

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
564
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
565

G
Guoxia Wang 已提交
566
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
567

G
Guoxia Wang 已提交
568
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
569 570 571 572 573 574 575 576 577 578 579

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
G
Guoxia Wang 已提交
580
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
581 582 583 584 585 586 587

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
588 589 590
            # The parameters of --gpus and --ips must be consistent in each node.

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 
G
Guoxia Wang 已提交
591 592 593 594 595 596 597 598 599 600 601 602

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
603
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
G
Guoxia Wang 已提交
604 605 606 607 608 609 610
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
611
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
625
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
G
Guoxia Wang 已提交
626 627 628 629 630 631 632 633
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
634
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
650
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
G
Guoxia Wang 已提交
651 652 653 654 655 656 657 658
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
659
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
        
    """

679 680 681 682
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
683
    if args.backend == 'auto':
684 685
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
686 687 688 689 690
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

K
kuizhiqing 已提交
691
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'heter', 'unknown']
692

X
xiongkun 已提交
693 694
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
695

696 697 698
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
699 700 701
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
702

K
kuizhiqing 已提交
703 704
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
705
    else:
K
kuizhiqing 已提交
706
        launch_ps(args, distribute_mode)
707 708 709 710


if __name__ == "__main__":
    launch()