nn.py 320.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
P
phlrain 已提交
172
    'lstm',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329
    """

    helper = LayerHelper('embedding', **locals())
330 331 332 333 334
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
335 336
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
    tmp = helper.create_variable_for_type_inference(dtype)
338 339
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
340 341 342 343 344
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
345 346 347
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
348
            'remote_prefetch': remote_prefetch,
349 350
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
351 352 353
    return tmp


W
wopeizl 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
370

W
wopeizl 已提交
371 372 373 374 375 376 377 378 379 380 381
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
382

W
wopeizl 已提交
383 384 385 386
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
387

W
wopeizl 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
474 475


P
phlrain 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
         dropout_prob=0.0,
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
    """
    If Device is GPU, This op will use cudnn LSTM implementation

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed


    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
638 639 640 641 642 643 644 645 646 647 648
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
649 650
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
651 652 653
    """
    **Dynamic LSTMP Layer**

654 655 656 657 658 659
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
660 661 662 663 664

    The formula is as follows:

    .. math::

665
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
666

667
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
668

669
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
670

671
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
672

673
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
674

675
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
676

677
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
678

Y
Yibing Liu 已提交
679 680 681 682 683 684
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
685
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
686
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
687
          bias vector).
Y
Yibing Liu 已提交
688 689 690
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
691
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
692
    * :math:`h`: The hidden state.
693
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
694 695
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
696
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
697
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
698
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
699 700
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
701 702 703 704

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
705

Y
Yibing Liu 已提交
706 707 708 709 710 711 712 713 714 715 716 717
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
718
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
719 720
                               hidden-hidden weight and projection weight.

721 722
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
723 724
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
725 726
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
727
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
728 729 730 731 732

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
733
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
734 735 736 737 738 739
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
740
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
741 742 743
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
744
                                - The shape is (1 x 7D).
C
chengduo 已提交
745 746 747 748 749

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
750 751 752 753 754 755 756 757 758
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
759
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
760 761
                              default "tanh".
        proj_activation(str): The activation for projection output.
762
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
763 764
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
765 766
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
767 768

    Returns:
769 770 771 772
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
773 774

    Examples:
775

Y
Yibing Liu 已提交
776 777
        .. code-block:: python

778 779 780 781
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
782
            hidden_dim, proj_dim = 512, 256
783
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
784
                                     act=None, bias_attr=None)
785 786 787
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
788 789 790 791
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
792
    """
793

C
chengduo 已提交
794
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
795
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
796
    size = size // 4
Y
Yibing Liu 已提交
797 798 799 800 801 802 803 804 805 806
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
807 808 809 810 811 812
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
841 842 843 844 845 846 847 848 849
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
850
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
851

852
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
853
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
854

G
guosheng 已提交
855 856 857 858 859 860 861 862 863
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
864

G
guosheng 已提交
865
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
866

G
guosheng 已提交
867
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
868 869
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
870 871 872 873
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
874
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
875 876

    Args:
877 878
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
879
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
880
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
881 882
            is the hidden size.
        size(int): The dimension of the gru cell.
883
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
884 885
            hidden-hidden weight matrix. Note:

886
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
887
              :math:`D` is the hidden size.
888
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
889
              The first part are weights of the update gate and reset gate with
890
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
891
              candidate hidden state with shape :math:`(D \\times D)`.
892 893 894 895 896

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
897
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
898
            the bias in the update gate, reset gate and candidate calculations.
899 900 901
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
902 903
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
904
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
905 906 907
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
908
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
909
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
910 911 912 913
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
914 915

    Returns:
G
guosheng 已提交
916
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
917
            and sequence length is the same with the input.
918

G
guosheng 已提交
919
    Examples:
920

G
guosheng 已提交
921 922
        .. code-block:: python

923 924 925 926
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
927
            hidden_dim = 512
928
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
929 930 931 932 933 934 935 936 937 938
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
939
    batch_size = input.shape[0]
G
guosheng 已提交
940
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
941
    if h_0:
G
guosheng 已提交
942
        assert h_0.shape == (
Y
Yancey 已提交
943 944 945
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
946

X
Xin Pan 已提交
947 948 949 950
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
969 970 971
def gru_unit(input,
             hidden,
             size,
972 973
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
974
             activation='tanh',
975
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
976
    """
977
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
978

979 980
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
981

982
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
983

984
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
985

986
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
987 988

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
989 990 991
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
992 993
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

994 995
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
996 997 998
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
999 1000 1001

    Args:
        input (Variable): The fc transformed input value of current step.
1002
        hidden (Variable): The hidden value of gru unit from previous step.
1003
        size (integer): The input dimension value.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025 1026 1027 1028
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1029

1030 1031 1032 1033 1034 1035
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1036

1037
             # assuming we have x_t_data and prev_hidden of size=10
1038
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1039 1040
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1053
    size = size // 3
Y
Yu Yang 已提交
1054 1055

    # create weight
1056 1057
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1058

X
Xin Pan 已提交
1059 1060 1061
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1062
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1063
    # create bias
1064
    if helper.bias_attr:
Y
Yu Yang 已提交
1065 1066 1067
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1068
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1069 1070 1071

    helper.append_op(
        type='gru_unit',
1072
        inputs=inputs,
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1079 1080
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1081 1082 1083 1084 1085
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1086
@templatedoc()
1087
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1088 1089 1090 1091 1092 1093 1094
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1095
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1096 1097 1098 1099
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1100 1101 1102
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1103 1104

    """
Y
Yu Yang 已提交
1105 1106 1107 1108 1109 1110
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1111 1112 1113 1114 1115 1116 1117 1118
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1134 1135 1136 1137
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1138

W
wopeizl 已提交
1139 1140
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1141

W
wopeizl 已提交
1142
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1143

W
wopeizl 已提交
1144
        label(${label_type}): ${label_comment}
1145

W
wopeizl 已提交
1146 1147
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149 1150
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1151

W
wopeizl 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1162
                "Transition": transition,
W
wopeizl 已提交
1163 1164
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1165

W
wopeizl 已提交
1166
    return viterbi_path
Y
Yu Yang 已提交
1167 1168


Y
yi.wu 已提交
1169
@templatedoc()
F
fengjiayi 已提交
1170
def cos_sim(X, Y):
Y
Yu Yang 已提交
1171
    """
Y
yi.wu 已提交
1172 1173 1174
    ${comment}

    Args:
1175 1176
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1177

Y
yi.wu 已提交
1178
    Returns:
1179
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1180
    """
F
fengjiayi 已提交
1181
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1182 1183 1184
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1195 1196 1197 1198 1199
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1200
            dropout_implementation="downgrade_in_infer"):
1201 1202 1203 1204 1205
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1206
    training. The dropout operator randomly sets (according to the given dropout
1207 1208 1209 1210
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1211 1212
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1213 1214 1215 1216 1217 1218 1219
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1231
                                           dropout op can be removed from the program.
P
phlrain 已提交
1232
                                           the program will be efficient
1233

P
phlrain 已提交
1234

1235 1236

    Returns:
1237
        Variable: A tensor variable is the shape with `x`.
1238 1239

    Examples:
1240

1241 1242
        .. code-block:: python

1243 1244
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1245 1246
    """

F
fengjiayi 已提交
1247
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1248 1249 1250
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1251 1252 1253 1254

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1255 1256 1257 1258 1259
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1260 1261 1262 1263
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1264 1265
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1266
        })
1267 1268 1269
    return out


1270
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1271
    """
Y
Yibing Liu 已提交
1272 1273
    **Cross Entropy Layer**

1274 1275 1276
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1277 1278

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1279
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1280

Y
Yibing Liu 已提交
1281
        .. math::
Y
yangyaming 已提交
1282

Y
Yibing Liu 已提交
1283 1284 1285
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1286 1287
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1288 1289 1290 1291 1292

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1293
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1294 1295 1296
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1297 1298
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1299
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1300

Y
Yibing Liu 已提交
1301
    Args:
Y
yangyaming 已提交
1302
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1303 1304 1305 1306
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1307
        label (Variable|list): the ground truth which is a 2-D tensor. When
1308 1309 1310 1311
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1312
        soft_label (bool): a flag indicating whether to
1313
                                           interpretate the given labels as soft
1314
                                           labels. Default: `False`.
M
minqiyang 已提交
1315 1316
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1317
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1318 1319 1320 1321 1322

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1323 1324 1325 1326 1327
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1328 1329 1330 1331 1332 1333

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1334
    """
F
fengjiayi 已提交
1335
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1336
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1337 1338 1339 1340 1341
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1342 1343
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1344 1345 1346
    return out


F
fengjiayi 已提交
1347
def square_error_cost(input, label):
Y
Yu Yang 已提交
1348
    """
1349 1350
    **Square error cost layer**

1351 1352
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1367 1368
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1369 1370

    Returns:
G
guosheng 已提交
1371
        Variable: The tensor variable storing the element-wise squared error \
1372
                  difference of input and label.
1373 1374 1375 1376 1377 1378 1379 1380

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1381
    """
F
fengjiayi 已提交
1382
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1383
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1390
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1391
    helper.append_op(
F
fengjiayi 已提交
1392 1393
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1394 1395 1396
    return square_out


Y
yi.wu 已提交
1397
@templatedoc()
Y
Yu Yang 已提交
1398 1399 1400 1401
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1402
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1403
    """
Y
yi.wu 已提交
1404
    **Chunk Evaluator**
Y
yi.wu 已提交
1405

Y
yangyaming 已提交
1406
    This function computes and outputs the precision, recall and
1407
    F1-score of chunk detection.
Y
yi.wu 已提交
1408

Y
yi.wu 已提交
1409 1410 1411 1412 1413 1414 1415 1416
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1417

Y
yi.wu 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1443

Y
yi.wu 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1468
    Args:
1469 1470 1471 1472 1473
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1474

Y
yi.wu 已提交
1475
    Returns:
Y
update  
yi.wu 已提交
1476 1477 1478
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1479

Y
yi.wu 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1492
    """
F
fengjiayi 已提交
1493
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1494 1495

    # prepare output
X
Xin Pan 已提交
1496 1497 1498 1499 1500 1501 1502
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1503 1504 1505 1506 1507 1508 1509 1510

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1511 1512 1513 1514
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1515 1516 1517
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1518 1519
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1520
        })
1521 1522
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1523 1524


1525
@templatedoc()
Y
Yu Yang 已提交
1526 1527 1528 1529 1530 1531 1532
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1533 1534
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1535 1536 1537 1538
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1539 1540 1541 1542 1543 1544 1545

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1559

1560 1561
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1562 1563 1564 1565 1566 1567 1568
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1569
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1580
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1581 1582 1583 1584 1585 1586
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1587
def sequence_softmax(input, use_cudnn=False, name=None):
1588 1589 1590
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1591
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1608 1609 1610
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1623 1624
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1625
    softmax_out = helper.create_variable_for_type_inference(dtype)
1626 1627 1628 1629 1630 1631 1632 1633
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1634
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1635
    """
1636
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1637
    has the same shape as the input.
Q
qiaolongfei 已提交
1638

1639 1640 1641 1642 1643 1644
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1645
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1646 1647 1648 1649 1650 1651 1652

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1653
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1654 1655 1656 1657 1658 1659 1660 1661

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1662 1663 1664
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1677 1678
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1679
    softmax_out = helper.create_variable_for_type_inference(dtype)
1680 1681 1682 1683 1684 1685 1686 1687
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1688 1689 1690
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1691 1692
           stride=1,
           padding=0,
1693
           dilation=1,
Y
Yu Yang 已提交
1694 1695 1696
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1697
           use_cudnn=True,
1698 1699
           act=None,
           name=None):
Y
Yu Yang 已提交
1700
    """
C
chengduoZH 已提交
1701
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1702 1703
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1704
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1705 1706 1707 1708 1709 1710 1711
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1712 1713 1714
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1715

1716
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1717

C
chengduoZH 已提交
1718 1719
    .. math::

C
refine  
chengduoZH 已提交
1720
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1721

T
tensor-tang 已提交
1722
    Where:
C
chengduoZH 已提交
1723

1724 1725 1726 1727 1728
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1729
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1730 1731 1732

    Example:

1733 1734
        - Input:

W
weixing02 已提交
1735
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1736

W
weixing02 已提交
1737
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1738

1739
        - Output:
T
tensor-tang 已提交
1740

W
weixing02 已提交
1741
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1742

C
chengduoZH 已提交
1743
        Where
1744 1745

        .. math::
C
chengduoZH 已提交
1746

W
weixing02 已提交
1747 1748
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1749 1750

    Args:
1751
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1752
        num_filters(int): The number of filter. It is as same as the output
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1781 1782
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1783 1784
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1785
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1786
            will be named automatically. Default: None
C
chengduoZH 已提交
1787 1788

    Returns:
G
guosheng 已提交
1789
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1790 1791
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1792
    Raises:
1793 1794
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1795

C
chengduoZH 已提交
1796 1797 1798
    Examples:
        .. code-block:: python

1799 1800
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1801 1802 1803
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1804
    assert param_attr is not False, "param_attr should not be False here."
1805
    l_type = 'conv2d'
X
xzl 已提交
1806 1807
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1808
        l_type = 'depthwise_conv2d'
1809 1810 1811 1812

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1813 1814 1815 1816 1817
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1818
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1819

C
chengduoZH 已提交
1820 1821 1822
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1823
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1824

C
chengduoZH 已提交
1825 1826
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1827 1828

    input_shape = input.shape
M
minqiyang 已提交
1829
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1830 1831

    def _get_default_param_initializer():
C
chengduo 已提交
1832 1833
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1834 1835 1836 1837 1838 1839 1840 1841
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1842
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1858
    helper.append_op(
1859
        type=l_type,
Y
Yu Yang 已提交
1860 1861 1862 1863 1864
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1865 1866 1867
        attrs={
            'strides': stride,
            'paddings': padding,
1868
            'dilations': dilation,
C
chengduoZH 已提交
1869
            'groups': groups,
1870
            'use_cudnn': use_cudnn,
1871
            'use_mkldnn': False,
C
chengduoZH 已提交
1872
        })
Y
Yu Yang 已提交
1873 1874 1875 1876 1877 1878

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1896 1897 1898 1899 1900 1901
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1911 1912
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1913 1914 1915
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1916
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1942
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1943 1944
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1945
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1946 1947
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1948
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1949 1950
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1951
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1952 1953 1954 1955 1956 1957
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1968 1969
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1970 1971
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1972
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1973
            will be named automatically. Default: None.
C
chengduoZH 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1986 1987
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1988 1989 1990
    """

    l_type = 'conv3d'
C
chengduo 已提交
1991
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2002
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2016 2017 2018
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2027
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2042
            'use_mkldnn': False
C
chengduoZH 已提交
2043 2044
        })

2045
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2046 2047 2048 2049

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2050
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2051
    """
Y
yangyaming 已提交
2052 2053 2054
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2066
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2067 2068 2069 2070 2071
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2072
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2073 2074 2075 2076 2077 2078 2079

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2080 2081
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2082

L
Luo Tao 已提交
2083 2084
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2085
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2086
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2087
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2088 2089 2090 2091 2092 2093 2094

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2095

Y
yangyaming 已提交
2096
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2097 2098 2099 2100 2101
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2102 2103
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2104
    """
F
fengjiayi 已提交
2105
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2106
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2107 2108
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2109 2110 2111 2112 2113 2114

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2115 2116
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2117

Y
yangyaming 已提交
2118 2119 2120 2121 2122
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2123 2124 2125
    return pool_out


C
add doc  
chengduoZH 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2145
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2146 2147 2148 2149 2150
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2151
def sequence_first_step(input):
L
Luo Tao 已提交
2152
    """
L
Luo Tao 已提交
2153
    This function gets the first step of sequence.
L
Luo Tao 已提交
2154 2155 2156 2157

    .. code-block:: text

       x is a 1-level LoDTensor:
2158
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2159 2160 2161 2162 2163
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2164
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2165
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2166

L
Luo Tao 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2176

Y
yangyaming 已提交
2177
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2178 2179 2180
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2181 2182 2183
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2184
def sequence_last_step(input):
L
Luo Tao 已提交
2185
    """
L
Luo Tao 已提交
2186
    This function gets the last step of sequence.
L
Luo Tao 已提交
2187 2188 2189 2190

    .. code-block:: text

       x is a 1-level LoDTensor:
2191
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2192 2193 2194 2195 2196
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2197
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2198
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2199

L
Luo Tao 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2209

Y
yangyaming 已提交
2210
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2211 2212 2213
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2214 2215 2216
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2217 2218 2219 2220
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2221
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2222 2223 2224 2225 2226
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2227

Y
Yibing Liu 已提交
2228 2229
	- Case:

2230
            Given the input Variable **input**:
2231

2232 2233 2234
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2235

2236
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2237

2238
            the output Variable will be
2239

2240 2241 2242
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2243 2244

    NOTE: The first dimension size of **input**, **offset** and **length**
2245
          should be equal. The **offset** should start from 0.
2246

Y
Yibing Liu 已提交
2247
    Args:
2248
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2249
                         sequences.
Y
Yibing Liu 已提交
2250 2251 2252 2253 2254 2255
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2256
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2267
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2268 2269 2270 2271
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2272
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2287
@templatedoc()
Y
Yu Yang 已提交
2288
def pool2d(input,
C
chengduoZH 已提交
2289 2290
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2291 2292
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2293
           global_pooling=False,
C
chengduoZH 已提交
2294
           use_cudnn=True,
2295
           ceil_mode=False,
2296 2297
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2298
    """
F
fengjiayi 已提交
2299
    ${comment}
2300 2301

    Args:
2302 2303 2304
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2305
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2306
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2307 2308
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2309
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2310 2311 2312 2313 2314 2315
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2316 2317 2318
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2319
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2320
                        layer will be named automatically.
2321
        exclusive (bool): Whether to exclude padding points in average pooling
2322
                          mode, default is true
F
fengjiayi 已提交
2323

2324
    Returns:
F
fengjiayi 已提交
2325
        Variable: The pooling result.
F
fengjiayi 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2339 2340 2341 2342
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2343
                            global_pooling=False)
Y
Yu Yang 已提交
2344 2345 2346 2347 2348
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2349

C
chengduoZH 已提交
2350 2351 2352 2353 2354
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2355 2356 2357 2358
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2359 2360
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2361

C
Add doc  
chengduoZH 已提交
2362
    l_type = 'pool2d'
2363 2364

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2365
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2366
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2367 2368

    helper.append_op(
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2380 2381
            "use_mkldnn": False,
            "exclusive": exclusive,
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2395 2396
           name=None,
           exclusive=True):
2397 2398
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2399
    pooling configurations mentioned in input parameters.
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2412
        exclusive (bool): Whether to exclude padding points in average pooling
2413
                          mode, default is true
2414

2415
    Returns:
2416
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2417 2418 2419 2420 2421
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2422

C
chengduoZH 已提交
2423 2424 2425 2426 2427
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2428 2429 2430
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2431

C
chengduoZH 已提交
2432 2433
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2434

2435 2436
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2437
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2438
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2439 2440

    helper.append_op(
2441
        type=l_type,
Y
Yu Yang 已提交
2442 2443 2444 2445 2446 2447 2448
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2449
            "paddings": pool_padding,
2450
            "use_cudnn": use_cudnn,
2451
            "ceil_mode": ceil_mode,
2452 2453
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2466
               data_layout='NCHW',
Y
Yang Yang 已提交
2467
               in_place=False,
2468 2469
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2470
               moving_variance_name=None,
2471 2472
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2473
    """
Q
qiaolongfei 已提交
2474 2475 2476 2477
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2478

Q
qiaolongfei 已提交
2479
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2480

Q
qiaolongfei 已提交
2481 2482
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2483 2484 2485
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2498 2499

    Args:
Q
qiaolongfei 已提交
2500
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2501 2502 2503 2504
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2505 2506 2507 2508 2509 2510 2511 2512
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2513
        data_layout(string, default NCHW): NCHW|NHWC
2514
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2515 2516 2517 2518
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2519
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2520
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2521 2522

    Returns:
Q
qiaolongfei 已提交
2523
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2524 2525 2526 2527 2528 2529 2530

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2531
    """
C
chengduo 已提交
2532
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2555
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2556

2557 2558
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2559 2560 2561
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2562
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2563
        shape=param_shape,
2564 2565 2566 2567 2568 2569 2570
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2571
            trainable=False,
W
wanghaoshuang 已提交
2572
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2573
        shape=param_shape,
2574 2575
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2576 2577 2578 2579 2580 2581

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2582 2583 2584 2585
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2586

X
Xin Pan 已提交
2587 2588
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2606 2607 2608 2609
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2610
            "use_mkldnn": False,
2611
            "fuse_with_relu": fuse_with_relu
2612
        })
Y
Yu Yang 已提交
2613 2614 2615 2616

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2617
@templatedoc()
G
guosheng 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2628
    ${comment}
G
guosheng 已提交
2629 2630 2631

    The formula is as follows:

Y
yuyang18 已提交
2632
    ..  math::
G
guosheng 已提交
2633 2634 2635 2636 2637 2638 2639

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2640 2641 2642 2643 2644 2645 2646 2647
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2648

G
guosheng 已提交
2649 2650
    Args:
        input(Variable): The input tensor variable.
2651
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2652
            normalization. Default True.
2653
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2654 2655
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2656
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2657
            Default 1.
2658
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2659
            division by zero. Default 1e-05.
G
guosheng 已提交
2660
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2661 2662
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2663 2664
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2665
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2666 2667
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2668
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2669
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2670
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2671 2672 2673
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2674 2675

    Returns:
Y
yuyang18 已提交
2676
        ${y_comment}
G
guosheng 已提交
2677 2678 2679

    Examples:

Y
yuyang18 已提交
2680 2681 2682
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2698
    if shift:
G
guosheng 已提交
2699 2700 2701 2702 2703 2704
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2705 2706 2707 2708 2709
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2803 2804 2805 2806
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2807 2808 2809
                     padding=0,
                     stride=1,
                     dilation=1,
2810
                     groups=None,
C
caoying03 已提交
2811
                     param_attr=None,
2812
                     bias_attr=None,
C
chengduoZH 已提交
2813
                     use_cudnn=True,
2814
                     act=None,
C
caoying03 已提交
2815
                     name=None):
Y
Yu Yang 已提交
2816
    """
2817 2818 2819 2820 2821 2822 2823 2824
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2825 2826
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2827 2828 2829
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2830 2831 2832 2833 2834

    For each input :math:`X`, the equation is:

    .. math::

2835
        Out = \sigma (W \\ast X + b)
2836

2837
    Where:
2838 2839 2840

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2841 2842 2843 2844
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2845

2846 2847 2848 2849
    Example:

        - Input:

2850
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2851

2852
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2853 2854 2855

        - Output:

2856
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2857 2858

        Where
Y
Yu Yang 已提交
2859

2860 2861
        .. math::

2862 2863 2864 2865
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2866 2867

    Args:
2868 2869 2870 2871
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2872 2873 2874 2875
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2904
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2905 2906 2907
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2908
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2909
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2910 2911

    Returns:
2912
        Variable: The tensor variable storing the convolution transpose result.
2913 2914

    Raises:
2915 2916
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2917 2918 2919 2920

    Examples:
       .. code-block:: python

2921 2922
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2923
    """
C
chengduo 已提交
2924
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2925 2926 2927 2928 2929 2930 2931 2932
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2933 2934 2935
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2936 2937 2938
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2939

C
chengduoZH 已提交
2940 2941
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2942

Y
Yu Yang 已提交
2943 2944 2945 2946 2947
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2948

Y
Yu Yang 已提交
2949 2950
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2951

C
chengduoZH 已提交
2952
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2953
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2954
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2955
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2956
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2957 2958 2959
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2960

2961 2962 2963 2964 2965 2966 2967
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2968
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2969
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2970

Y
Yu Yang 已提交
2971 2972 2973
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2974
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2975
    helper.append_op(
2976
        type=op_type,
Y
Yu Yang 已提交
2977 2978
        inputs={'Input': [input],
                'Filter': [img_filter]},
2979
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2980
        attrs={
2981
            'output_size': output_size,
2982 2983 2984 2985 2986
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2987 2988
        })

2989 2990 2991
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2992 2993


2994
def conv3d_transpose(input,
Y
Yu Yang 已提交
2995 2996 2997
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2998 2999 3000
                     padding=0,
                     stride=1,
                     dilation=1,
3001
                     groups=None,
C
caoying03 已提交
3002
                     param_attr=None,
3003
                     bias_attr=None,
C
chengduoZH 已提交
3004
                     use_cudnn=True,
3005
                     act=None,
C
caoying03 已提交
3006
                     name=None):
Y
Yu Yang 已提交
3007
    """
3008
    **Convlution3D transpose layer**
3009

3010
    The convolution3D transpose layer calculates the output based on the input,
3011
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3012 3013 3014 3015 3016 3017
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3018 3019 3020
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3021 3022 3023 3024 3025

    For each input :math:`X`, the equation is:

    .. math::

3026
        Out = \sigma (W \\ast X + b)
3027 3028 3029

    In the above equation:

3030 3031
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3032 3033 3034 3035
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3036

3037 3038 3039 3040
    Example:

        - Input:

3041
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3042

3043
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3044 3045 3046

        - Output:

3047
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3048 3049

        Where
Y
Yu Yang 已提交
3050

3051 3052
        .. math::

3053 3054 3055
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3056 3057

    Args:
3058
        input(Variable): The input image with [N, C, D, H, W] format.
3059 3060 3061
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3062
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3063 3064
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3065
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3066 3067 3068
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3069 3070
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3071
        stride(int|tuple): The stride size. If stride is a tuple, it must
3072 3073
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3074
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3075 3076 3077
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3078 3079 3080 3081 3082
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3092 3093
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3094 3095
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3096 3097
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3098 3099

    Returns:
3100
        Variable: The tensor variable storing the convolution transpose result.
3101 3102

    Raises:
3103 3104
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3105 3106 3107 3108

    Examples:
       .. code-block:: python

3109 3110
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3111
    """
C
chengduo 已提交
3112
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3113 3114
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3115
    if not isinstance(input, Variable):
3116
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3117 3118
    input_channel = input.shape[1]

3119 3120 3121
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3122

C
chengduoZH 已提交
3123 3124 3125
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3126 3127 3128 3129 3130 3131
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3132 3133 3134
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3135

3136
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3137
                         padding[0] - 1) // dilation[0] + 1
3138
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3139
                         padding[1] - 1) // dilation[1] + 1
3140
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3141
                         padding[2] - 1) // dilation[2] + 1
3142
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3143
    else:
3144 3145
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3146

3147
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3148
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3149 3150 3151
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3152
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3153
    helper.append_op(
3154
        type=l_type,
Y
Yu Yang 已提交
3155 3156
        inputs={'Input': [input],
                'Filter': [img_filter]},
3157
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3158 3159 3160 3161
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3162
            'groups': groups,
C
chengduoZH 已提交
3163 3164
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3165

3166 3167
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3168
    return out
Y
yangyaming 已提交
3169 3170


Y
yangyaming 已提交
3171
def sequence_expand(x, y, ref_level=-1, name=None):
3172
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3173 3174 3175 3176
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3177 3178 3179 3180 3181

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3182
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3183
                x.data = [[a], [b], [c], [d]]
3184 3185 3186
                x.dims = [4, 1]

            y is a LoDTensor:
3187 3188
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3189

Y
yangyaming 已提交
3190
            ref_level: 0
3191

Y
yangyaming 已提交
3192
            then output is a 1-level LoDTensor:
3193
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3194
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3195 3196 3197 3198
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3199
                x.data = [[a], [b], [c]]
3200 3201 3202
                x.dims = [3, 1]

            y is a LoDTensor:
3203
                y.lod = [[2, 0, 3]]
3204

Y
yangyaming 已提交
3205
            ref_level: -1
3206

Y
yangyaming 已提交
3207 3208 3209
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3210 3211 3212
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3213 3214
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3215
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3216
                        will be named automatically.
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3227
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3228
    """
Y
yangyaming 已提交
3229
    helper = LayerHelper('sequence_expand', input=x, **locals())
3230
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3231
    tmp = helper.create_variable_for_type_inference(dtype)
3232
    helper.append_op(
Y
yangyaming 已提交
3233 3234 3235 3236 3237
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3238
    return tmp
3239 3240


C
chengduo 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3297
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3298 3299 3300 3301 3302 3303 3304 3305
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3306
@templatedoc()
3307
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3308 3309 3310 3311 3312
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3313 3314 3315
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3316
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3317 3318 3319 3320
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3321 3322 3323
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3324

F
fengjiayi 已提交
3325
    Returns:
M
minqiyang 已提交
3326
        Variable: The padded sequence batch and the original lengths before
3327
                  padding. All sequences has the same length.
M
minqiyang 已提交
3328

F
fengjiayi 已提交
3329 3330 3331 3332 3333 3334 3335
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3336
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3337
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3338 3339 3340 3341 3342
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3343 3344
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3345 3346 3347 3348

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3349 3350 3351 3352 3353 3354
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3355 3356
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3357
        attrs={'padded_length': maxlen})
3358
    return out, length
F
fengjiayi 已提交
3359 3360


3361
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3362
    """
3363
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3364

3365 3366
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3376 3377 3378
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3379
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3380 3381 3382 3383 3384 3385

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3386
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3387 3388 3389 3390 3391 3392

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3393 3394
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3409
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3421 3422 3423 3424 3425 3426 3427 3428 3429
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3430 3431
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3432 3433 3434

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3435 3436

    This layer does the search in beams for one time step. Specifically, it
3437 3438 3439 3440 3441 3442
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3443

3444 3445 3446 3447 3448 3449 3450 3451
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3452

3453
    Args:
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3479

3480
    Returns:
3481 3482
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3483 3484 3485 3486

    Examples:
        .. code-block:: python

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3504 3505 3506 3507
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3508 3509 3510
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3511 3512 3513 3514 3515

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3516
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3534 3535 3536 3537 3538 3539 3540
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3551

3552 3553 3554 3555 3556 3557
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3558

3559 3560 3561 3562 3563 3564 3565 3566
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3567 3568
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3584 3585 3586 3587
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3588
              param_attr=None,
C
caoying03 已提交
3589 3590
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3591 3592 3593 3594
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3595
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3596

3597
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3598

3599
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3600

3601
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3602 3603 3604

            h_t & = o_t tanh(c_t)

3605 3606 3607 3608 3609 3610
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3611 3612 3613

        .. math::

3614
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3615 3616 3617 3618 3619 3620 3621 3622

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3623
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3624 3625

    Args:
Y
yangyaming 已提交
3626 3627 3628 3629 3630 3631
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3632
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3645 3646
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3647 3648

    Returns:
Y
yangyaming 已提交
3649
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3650 3651

    Raises:
3652 3653 3654 3655
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3656 3657 3658 3659 3660 3661

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3662
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3663
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3664
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3681
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3682 3683 3684 3685
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3686 3687
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3688 3689 3690
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3691
    size = cell_t_prev.shape[1]
3692
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3693 3694
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3695
                param_attr=param_attr,
3696
                bias_attr=bias_attr)
Y
yangyaming 已提交
3697
    dtype = x_t.dtype
X
Xin Pan 已提交
3698 3699
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3709
    return h, c
G
guosheng 已提交
3710 3711


C
caoying03 已提交
3712
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3713
    """
Y
yangyaming 已提交
3714
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3715 3716 3717

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3718
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3719 3720
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3721 3722
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3723
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3724
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3725
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3726 3727
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3728 3729 3730

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3731

G
guosheng 已提交
3732 3733 3734 3735 3736 3737
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3738
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3739 3740 3741 3742
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3743 3744 3745 3746

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3747
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3748 3749 3750
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3751 3752
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3753
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3754 3755
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3756 3757 3758 3759 3760
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3761
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3762 3763 3764 3765
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3766 3767


C
caoying03 已提交
3768
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3769
    """
Y
Yibing Liu 已提交
3770
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3771 3772 3773

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3774 3775 3776
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3777
            must be in the range :math:`[-rank(input), rank(input))`. If
3778
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3779
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3780 3781
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3782
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3783
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3784
                       will be named automatically.
G
guosheng 已提交
3785 3786

    Returns:
Y
Yibing Liu 已提交
3787
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3788

G
guosheng 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3799 3800
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3801 3802 3803 3804 3805 3806 3807

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3808 3809
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3810
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3811 3812
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3813 3814 3815 3816 3817
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3818
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3819 3820 3821 3822
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3823 3824


C
caoying03 已提交
3825
def reduce_max(input, dim=None, keep_dim=False, name=None):
3826
    """
Y
yangyaming 已提交
3827
    Computes the maximum of tensor elements over the given dimension.
3828 3829 3830

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3831
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3832 3833 3834
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3835
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3836 3837
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3838
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3839 3840
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3841 3842 3843

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3856 3857 3858 3859 3860 3861 3862

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3863 3864
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3865
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3866 3867
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3868 3869 3870 3871 3872
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3873
            'dim': dim if dim != None else [0],
3874 3875 3876 3877 3878 3879
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3880
def reduce_min(input, dim=None, keep_dim=False, name=None):
3881
    """
Y
yangyaming 已提交
3882
    Computes the minimum of tensor elements over the given dimension.
3883 3884 3885

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3886
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3887 3888 3889
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3890
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3891 3892
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3893
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3894 3895
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3896 3897 3898

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3899

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3911 3912 3913 3914 3915 3916 3917

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3918 3919
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3920
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3921 3922
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3923 3924 3925 3926 3927
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3928
            'dim': dim if dim != None else [0],
3929 3930 3931 3932
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3933 3934


3935 3936 3937 3938 3939 3940
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3941
        dim (list|int|None): The dimensions along which the product is performed. If
3942 3943
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3944 3945
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3946 3947 3948
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3949
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3950
            layer will be named automatically.
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3965
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3966
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3967 3968 3969 3970 3971 3972 3973

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3974 3975
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3976
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3977 3978
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3979 3980 3981 3982 3983
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3984
            'dim': dim if dim != None else [0],
3985 3986 3987 3988 3989 3990
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3991
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3992
    """
C
caoying03 已提交
3993
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3994 3995 3996

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3997 3998 3999 4000 4001
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4002
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4003
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4004
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4005 4006
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4007 4008

    Returns:
D
dzhwinter 已提交
4009
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4019 4020
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4036
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4059
    .. math::
4060 4061

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4062 4063 4064 4065 4066

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4067
        x(Variable|list): The input tensor to l2_normalize layer.
4068
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4069 4070
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4071
        epsilon(float): The epsilon value is used to avoid division by zero, \
4072
            the defalut value is 1e-10.
4073
        name(str|None): A name for this layer(optional). If set None, the layer \
4074
            will be named automatically.
C
caoying03 已提交
4075 4076

    Returns:
4077
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4078 4079

    Examples:
4080

C
caoying03 已提交
4081 4082
        .. code-block:: python

4083 4084 4085 4086
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4087 4088
    """

F
fengjiayi 已提交
4089 4090
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4091 4092
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4093 4094
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4095
    helper.append_op(
4096 4097 4098 4099
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4100
        attrs={
4101 4102
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4103 4104
        })
    return out
4105 4106


S
sneaxiy 已提交
4107
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4108
    """
Y
ying 已提交
4109 4110 4111 4112
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4113

C
chengduoZH 已提交
4114
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4115
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4116

4117 4118 4119 4120 4121
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4122
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4123

C
chengduoZH 已提交
4124
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4125
      performs in the following way.
G
guosheng 已提交
4126

4127
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4128
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4129
        last two dimensions and a batched matrix multiply supporting broadcast
4130
        applies on the two tensors.
G
guosheng 已提交
4131

Y
ying 已提交
4132 4133
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4134
    removed after matrix multiplication.
G
guosheng 已提交
4135 4136 4137

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4138 4139 4140
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4141
        alpha (float): The scale of output. Default 1.0.
4142
        name(str|None): A name for this layer(optional). If set None, the layer
4143
            will be named automatically.
G
guosheng 已提交
4144 4145

    Returns:
4146
        Variable: The product Tensor variable.
G
guosheng 已提交
4147

G
guosheng 已提交
4148 4149 4150
    Examples:
        .. code-block:: python

4151
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4152 4153
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4154

4155 4156
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4157

4158 4159
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4160

4161 4162
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4163 4164 4165 4166

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4167 4168
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4169

Y
ying 已提交
4170
            # x: [M], y: [N]
4171
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4172
    """
Y
ying 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4185
            y_shape = y_shape + [1]
Y
ying 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4202
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4203
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4204
    helper.append_op(
4205 4206 4207 4208
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4209 4210 4211
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4212
            'alpha': float(alpha),
S
sneaxiy 已提交
4213
        })
4214
    return out
4215 4216


4217
def topk(input, k, name=None):
Q
qingqing01 已提交
4218 4219 4220 4221
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4222
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4223 4224 4225 4226 4227 4228
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4250 4251 4252
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4253
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4254
                 of input.
4255
        name(str|None): A name for this layer(optional). If set None, the layer
4256
                       will be named automatically.
F
fengjiayi 已提交
4257
                       Default: None
Q
qingqing01 已提交
4258 4259

    Returns:
4260 4261 4262
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4263
        within the last dimension of input.
Q
qingqing01 已提交
4264

F
fengjiayi 已提交
4265 4266
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4267 4268 4269 4270 4271 4272 4273

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4274 4275
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4287
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4288
    """
Y
ying 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4298

Y
ying 已提交
4299
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4300

4301
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4302 4303
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4304
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4305

4306
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4307 4308
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4309

4310 4311 4312
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4313
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4314
                          the length of reference string.
4315
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4316
                                     calculating edit distance.
4317
        name (str): The name of this layer. It is optional.
4318

W
wanghaoshuang 已提交
4319
    Returns:
W
wanghaoshuang 已提交
4320
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4321 4322 4323 4324

    Examples:
        .. code-block:: python

T
tink2123 已提交
4325 4326
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4327
            cost = fluid.layers.edit_distance(input=x,label=y)
4328
    """
4329
    helper = LayerHelper("edit_distance", **locals())
4330

4331
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4332
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4333 4334
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4335 4336 4337 4338 4339

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4340
            attrs={"tokens": ignored_tokens})
4341 4342 4343 4344 4345
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4346
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4347
            attrs={"tokens": ignored_tokens})
4348 4349
        label = erased_label

4350
    # edit distance op
X
Xin Pan 已提交
4351 4352
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4353 4354 4355 4356
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4357 4358
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4359 4360
        attrs={"normalized": normalized})

4361
    return edit_distance_out, sequence_num
4362 4363 4364 4365 4366


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4367

Y
ying 已提交
4368 4369 4370 4371
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4389
        input.lod = [[4, 4]]
4390 4391 4392 4393 4394 4395 4396

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4397
        output.lod = [[2, 1]]
4398 4399 4400

    Args:

Y
ying 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4410
        name (str): The name of this layer. It is optional.
4411 4412

    Returns:
4413
        Variable: CTC greedy decode result. If all the sequences in result were
4414
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4415 4416 4417 4418 4419

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4420

4421
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4422
    """
4423
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4424
    _, topk_indices = topk(input, k=1)
4425 4426

    # ctc align op
X
Xin Pan 已提交
4427
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4428 4429 4430
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4431
        outputs={"Output": [ctc_out]},
4432 4433
        attrs={"merge_repeated": True,
               "blank": blank})
4434
    return ctc_out
4435 4436


W
Wu Yi 已提交
4437
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4438
    """
4439 4440
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4441
    to compute Connectionist Temporal Classification (CTC) loss.
4442 4443
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4444 4445 4446
    input tensor.

    Args:
4447
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4448 4449 4450 4451
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4452
       label (Variable): The ground truth of variable-length sequence,
4453 4454 4455
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4456 4457
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4458 4459 4460
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4461
         follewed by a mean_op.
W
Wu Yi 已提交
4462
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4463 4464

    Returns:
4465 4466
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4467 4468

    Examples:
4469

W
wanghaoshuang 已提交
4470
        .. code-block:: python
4471

4472 4473 4474
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4475 4476

    """
F
fengjiayi 已提交
4477
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4478 4479
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4480 4481 4482 4483 4484 4485
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4486 4487 4488 4489 4490
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4491
    return loss_out
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4507 4508 4509
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4510 4511 4512 4513 4514
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4515

4516
            out.lod  = [[0, 1, 3]]
4517 4518 4519 4520

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4521 4522 4523 4524 4525 4526 4527
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4528 4529 4530

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4531 4532

    Returns:
4533

4534 4535 4536 4537 4538
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4539
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4540
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4541 4542
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4543
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4544 4545 4546 4547 4548 4549
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4550 4551


4552 4553 4554 4555
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4556 4557 4558 4559 4560 4561
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4562
        num_neg_samples=None,
4563 4564 4565
        name=None,
        sampler="uniform",
        custom_dist=None,
4566 4567
        seed=0,
        is_sparse=False):
4568 4569 4570 4571 4572 4573 4574
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4575 4576
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4577
            sample is 1.0.
C
chengduo 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4587
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4588 4589
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4590 4591 4592
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4593
        custom_dist (float[]): A float[] with size=num_total_classes.
4594 4595 4596 4597
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4598
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4599

4600
    Returns:
Y
Yibing Liu 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4628 4629 4630 4631 4632 4633 4634 4635 4636

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4637

4638
    """
Y
Yang Yu 已提交
4639 4640 4641
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4642 4643

    dim = input.shape[1]
Y
Yang Yu 已提交
4644 4645 4646 4647 4648 4649
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4650
    inputs = {}
C
chengduo 已提交
4651 4652 4653 4654 4655 4656 4657
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4658 4659 4660
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4661

4662 4663 4664 4665
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4666 4667 4668 4669 4670 4671 4672

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4725 4726 4727 4728
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4729 4730 4731 4732 4733
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4734 4735
    attrs = {
        'num_total_classes': int(num_total_classes),
4736 4737
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4738 4739
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4740
    }
Y
Yang Yu 已提交
4741 4742 4743

    helper.append_op(
        type='nce',
C
chengduo 已提交
4744
        inputs=inputs,
Y
Yang Yu 已提交
4745 4746 4747 4748 4749 4750
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4751
    return cost / (num_neg_samples + 1)
4752 4753


C
chengduo 已提交
4754 4755
def hsigmoid(input,
             label,
4756
             num_classes,
C
chengduo 已提交
4757 4758
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4759
             name=None,
4760 4761 4762
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4763
             is_sparse=False):
W
weixing02 已提交
4764 4765
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4766
    process of language model. This operator organizes the classes into a
4767 4768
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4769 4770 4771 4772 4773 4774
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4775
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4776
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4777

4778 4779 4780 4781 4782 4783 4784 4785 4786
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4787
    Args:
M
minqiyang 已提交
4788
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4789 4790 4791 4792
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4793 4794 4795
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4807 4808 4809 4810 4811 4812 4813
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4814
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4815 4816
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4817 4818

    Returns:
J
JiabinYang 已提交
4819
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4820 4821 4822 4823 4824

    Examples:

        .. code-block:: python

G
guosheng 已提交
4825 4826 4827
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4828 4829 4830 4831
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4832 4833
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4834
    dim = input.shape[1]
4835
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4836 4837 4838
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4839 4840 4841 4842
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4843 4844
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4845 4846 4847
    else:
        pass

J
JiabinYang 已提交
4848 4849
    weights = None

4850
    if not is_custom:
J
JiabinYang 已提交
4851 4852 4853 4854 4855 4856 4857 4858
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4859
            shape=[num_classes, dim],
J
JiabinYang 已提交
4860 4861
            is_bias=False,
            dtype=input.dtype)
4862 4863 4864
    inputs = {
        "X": input,
        "W": weights,
4865 4866
        "PTable": path_table,
        "PathCode": path_code,
4867 4868
        "Label": label
    }
W
weixing02 已提交
4869
    if helper.bias_attr:
4870
        if not is_custom:
J
JiabinYang 已提交
4871 4872
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4873
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4874 4875 4876 4877 4878 4879
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4880
                shape=[num_classes, 1],
J
JiabinYang 已提交
4881 4882 4883
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4884 4885
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4886
        inputs=inputs,
W
weixing02 已提交
4887 4888
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4889 4890
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4891 4892 4893
    return out


Y
fix ci.  
ying 已提交
4894
def transpose(x, perm, name=None):
Y
ying 已提交
4895 4896 4897 4898 4899 4900 4901
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4902 4903 4904
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4905 4906 4907 4908 4909 4910 4911

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4912
            # use append_batch_size=False to avoid prepending extra
4913
            # batch size in shape
4914
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4915
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4916
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4917 4918
    """

Y
fix ci.  
ying 已提交
4919
    if len(perm) != len(x.shape):
Y
ying 已提交
4920 4921 4922
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4923 4924 4925 4926 4927 4928
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4929 4930

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4931 4932
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4933
    helper.append_op(
4934
        type='transpose2',
Y
fix ci.  
ying 已提交
4935
        inputs={'X': [x]},
4936 4937
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4938 4939
        attrs={'axis': perm})
    return out
4940 4941


4942 4943 4944 4945 4946 4947 4948
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4949
    """
4950 4951 4952 4953 4954 4955 4956
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4985 4986 4987 4988 4989 4990 4991 4992 4993
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4994 4995 4996
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4997 4998 4999 5000 5001
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5029 5030 5031
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5044
            output.dims = {8, 8}
5045

5046
            output.lod = [[4, 4]]
5047

D
dzhwinter 已提交
5048
     Examples:
5049 5050 5051

        .. code-block:: python

5052 5053
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5054 5055

    """
W
wanghaoshuang 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5066 5067 5068 5069 5070 5071 5072
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5073
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5074
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5075
    helper.append_op(
5076
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5077
    return out
5078 5079


Y
yuyang18 已提交
5080
@templatedoc()
5081
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5082 5083
    """
    ${comment}
5084 5085

    Args:
Y
yuyang18 已提交
5086
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5087 5088
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5089 5090 5091 5092 5093
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5094
        ${out_comment}.
5095 5096

    Examples:
Y
yuyang18 已提交
5097 5098 5099 5100
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5101 5102 5103 5104 5105 5106
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5107
    out = helper.create_variable_for_type_inference(dtype)
5108 5109 5110 5111 5112
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5113
    return helper.append_activation(out)
5114 5115


Y
yuyang18 已提交
5116
@templatedoc()
5117 5118
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5119 5120 5121 5122 5123 5124 5125
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5126 5127

    Args:
Y
yuyang18 已提交
5128 5129
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5130 5131

    Returns:
Y
yuyang18 已提交
5132
        ${out_comment}.
5133 5134
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5135 5136 5137 5138 5139

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5140
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5141 5142 5143 5144 5145 5146
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5147 5148


5149 5150 5151
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5152
                               ignore_index=-100,
5153 5154
                               numeric_stable_mode=False,
                               return_softmax=False):
5155 5156
    """
    **Softmax With Cross Entropy Operator.**
5157

5158 5159 5160 5161
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5162

5163 5164 5165
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5166

5167 5168 5169
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5170

5171
    The equation is as follows:
5172

5173
    1) Hard label (one-hot label, so every sample has exactly one class)
5174

5175 5176 5177 5178
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5179

5180 5181 5182
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5183

5184 5185 5186 5187
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5188 5189 5190
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5191

S
sneaxiy 已提交
5192 5193 5194 5195 5196 5197 5198 5199
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5200 5201 5202 5203 5204 5205 5206 5207
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5208 5209
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5210
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5211 5212 5213
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5214 5215 5216
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5217
                                    stable algorithm. Default: False
5218
        return_softmax (bool): A flag indicating whether to return the softmax
5219
                               along with the cross entropy loss. Default: False
5220

5221
    Returns:
5222 5223 5224 5225
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5226
                              2-D tensor with shape [N x K].
5227 5228 5229 5230 5231 5232 5233

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5234 5235
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5236 5237
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5238 5239
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5240 5241 5242 5243 5244 5245
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5246 5247 5248 5249 5250
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5251 5252 5253 5254

    if return_softmax:
        return loss, softmax

5255 5256 5257 5258 5259
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5260 5261
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5262
    For each instance, it computes the smooth L1 loss element by element first
5263
    and then sums all the losses. So the shape of ouput Variable is
5264
    [batch_size, 1].
5265

5266 5267
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5268
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5269
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5270
            L1 loss op with same shape as :attr:`x`.
5271
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5272 5273
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5274
            by this tensor element by element.
5275
        outside_weight (Variable|None): A tensor with rank at least 2. This
5276 5277
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5278
            element by element.
5279
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5280 5281
           scalar with default value 1.0.

5282
    Returns:
5283
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5284 5285 5286 5287 5288

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5289 5290
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5291
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5292
            out = fluid.layers.smooth_l1(x=fc, y=label)
5293
    """
5294

5295
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5296 5297
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5310 5311 5312 5313


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5314
    This layer creates the one-hot representations for input indices.
5315 5316

    Args:
Y
Yibing Liu 已提交
5317 5318
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5319 5320

    Returns:
Y
Yibing Liu 已提交
5321
        Variable: The one-hot representations of input.
5322 5323

    Examples:
C
caoying03 已提交
5324
        .. code-block:: python
5325

Y
Yibing Liu 已提交
5326 5327
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5328 5329
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5330
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5331 5332 5333 5334 5335 5336
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5337 5338


Y
Yu Yang 已提交
5339
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5340
    """
Y
yi.wu 已提交
5341 5342 5343
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5344 5345 5346 5347 5348 5349

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5350 5351
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5352 5353 5354 5355 5356 5357

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5358 5359
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5360 5361
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5362 5363 5364 5365 5366
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5367
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5368
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5369 5370
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5371 5372
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5373 5374 5375
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5376 5377


5378
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5379
    """
C
caoying03 已提交
5380 5381
    Gives a new shape to the input Tensor without changing its data.

5382 5383 5384 5385 5386
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5387

5388
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5389

5390 5391 5392 5393
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5394
    2. 0 means the actual dimension value is going to be copied from the
5395 5396 5397 5398
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5399 5400

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5401
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5402
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5403

5404
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5405 5406
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5407 5408
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5409
    dimensions.
C
caoying03 已提交
5410

5411
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5412 5413 5414 5415
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5416 5417

    Args:
5418
        x(variable): The input tensor.
C
caoying03 已提交
5419 5420
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5421 5422 5423 5424 5425
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5426 5427
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5428 5429 5430 5431 5432 5433 5434
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5435
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5436

5437
    Returns:
G
guosheng 已提交
5438 5439 5440 5441
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5442

X
Xin Pan 已提交
5443 5444 5445
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5446 5447
    Examples:
        .. code-block:: python
G
guosheng 已提交
5448

5449
            data = fluid.layers.data(
5450
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5451
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5452
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5453 5454 5455
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5456
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5457 5458 5459 5460 5461
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5462

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5478
    helper = LayerHelper("reshape2", **locals())
5479 5480
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5481
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5482
    helper.append_op(
5483
        type="reshape2",
X
Xin Pan 已提交
5484
        inputs=inputs,
D
dzhwinter 已提交
5485
        attrs={"shape": shape},
5486 5487
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5488

D
dzhwinter 已提交
5489
    return helper.append_activation(out)
5490

5491

5492
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5493
    """
M
minqiyang 已提交
5494 5495 5496
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5497
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5498

Y
Yibing Liu 已提交
5499 5500
    Examples:
    Case 1:
M
minqiyang 已提交
5501
      Given
Y
Yibing Liu 已提交
5502 5503 5504 5505 5506 5507 5508 5509
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5510
        and
Y
Yibing Liu 已提交
5511 5512 5513
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5514

Y
Yibing Liu 已提交
5515
    Args:
5516
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5517
        axes (list): List of integers, indicating the dimensions to be squeezed.
5518
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5519 5520 5521 5522 5523 5524 5525 5526

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5527
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5528 5529
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5530 5531
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5532
    helper.append_op(
5533
        type="squeeze2",
5534
        inputs={"X": input},
Y
Yibing Liu 已提交
5535
        attrs={"axes": axes},
5536 5537
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5538

5539 5540 5541
    return out


5542
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5543
    """
M
minqiyang 已提交
5544 5545 5546
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5547

M
minqiyang 已提交
5548 5549
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5550
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5551

Y
Yibing Liu 已提交
5552
    Args:
5553
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5554
        axes (list): List of integers, indicating the dimensions to be inserted.
5555
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5556 5557 5558 5559 5560 5561 5562 5563

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5564
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5565 5566
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5567 5568
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5569
    helper.append_op(
5570
        type="unsqueeze2",
5571
        inputs={"X": input},
Y
Yibing Liu 已提交
5572
        attrs={"axes": axes},
5573 5574
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5575

5576 5577
    return out

5578

Y
yangyaming 已提交
5579
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5580
    """
Y
Yibing Liu 已提交
5581
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5582 5583 5584 5585
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5586
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5587 5588 5589 5590 5591 5592

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5593
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5594 5595 5596
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5597
            target_lod: [4, 2]
Y
yangyaming 已提交
5598 5599

            then we get a 1-level LoDTensor:
5600
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5601 5602 5603 5604 5605 5606
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5607
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5608 5609 5610 5611
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5612
                y.data = [[2, 4]]
Y
yangyaming 已提交
5613 5614 5615
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5616
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5617 5618 5619 5620 5621 5622
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5623
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5624 5625 5626 5627
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5628
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5629 5630 5631 5632
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5633
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5634 5635 5636 5637 5638
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5639
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5640
                           from :attr:`y`.
Y
yangyaming 已提交
5641
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5642
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5643 5644

    Returns:
Y
Yibing Liu 已提交
5645
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5646 5647

    Raises:
Y
Yibing Liu 已提交
5648
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5658
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5684
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5713 5714
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5727 5728 5729
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5743 5744 5745 5746


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5747
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5748
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5749

G
guosheng 已提交
5750 5751 5752 5753
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5776
                         The length of :attr:paddings must be
G
guosheng 已提交
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5787

G
guosheng 已提交
5788 5789 5790 5791 5792 5793
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5794
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5795 5796 5797 5798 5799 5800 5801
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5802 5803


C
chengduo 已提交
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5874
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5884 5885 5886 5887 5888 5889 5890
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5891 5892
    called label-smoothing regularization (LSR).

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5916
                              be :math:`(1, class\_num)`.
5917 5918
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5919
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5939
    smooth_label = helper.create_variable_for_type_inference(dtype)
5940 5941 5942 5943 5944 5945 5946
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5947 5948


W
wopeizl 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5985 5986


J
jerrywgz 已提交
5987 5988 5989 5990 5991 5992
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5993 5994
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6011 6012 6013
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6014 6015 6016 6017 6018 6019
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6020
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6061 6062
        .. code-block:: python

W
whs 已提交
6063 6064 6065 6066
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6067
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6068 6069 6070 6071 6072 6073
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6074 6075


6076 6077 6078 6079
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6080 6081
                 resample='BILINEAR',
                 actual_shape=None):
6082
    """
Q
qiaolongfei 已提交
6083
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6084

6085
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6086 6087 6088
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6089

6090
        'BILINEAR' : Bilinear interpolation
6091
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6092

6093
    Args:
6094
        input (Variable): The input tensor of image resize layer,
6095 6096
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6097
        out_shape(list|tuple|Variable|None): Output shape of image resize
6098 6099
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6100
        scale(float|None): The multiplier for the input height or width.
6101 6102 6103
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6104 6105
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6106
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6107
                       currently.
6108
                       Default: 'BILINEAR'
6109 6110 6111
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6112
                                :attr:`out_shape` and :attr:`scale` specifying
6113 6114 6115 6116 6117 6118 6119
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6120 6121
                                constructing stage.
                                Default: None
6122 6123

    Returns:
Q
update  
qiaolongfei 已提交
6124 6125
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6126

6127 6128 6129
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6130
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6131 6132 6133 6134
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6135 6136 6137
    Examples:
        .. code-block:: python

6138
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6139
    """
6140 6141 6142 6143
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6144 6145
    if resample not in resample_methods:
        raise ValueError(
6146
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6147
        )
6148
    resample_type = resample_methods[resample]
6149
    if out_shape is None and scale is None:
6150
        raise ValueError("One of out_shape and scale must not be None.")
6151
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6152
    dtype = helper.input_dtype()
6153 6154 6155 6156

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6157 6158 6159
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6160
    if out_shape is not None:
6161 6162 6163 6164
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6165
            inputs['OutSize'] = out_shape
6166 6167 6168 6169 6170 6171 6172 6173
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6174 6175 6176 6177
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6178 6179 6180 6181 6182
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6183
    out = helper.create_variable_for_type_inference(dtype)
6184
    helper.append_op(
6185
        type='{}_interp'.format(resample_type),
6186
        inputs=inputs,
6187
        outputs={"Out": out},
6188 6189 6190
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6191
    return out
F
stash  
fengjiayi 已提交
6192 6193


6194
@templatedoc(op_type="bilinear_interp")
6195 6196 6197 6198 6199
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6200
    """
6201 6202
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6203 6204
    in priority order.

6205 6206 6207 6208
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6209 6210
    again in the other direction.

6211
    For details of bilinear interpolation, please refer to Wikipedia:
6212
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6213 6214 6215 6216 6217

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6218

Y
yuyang18 已提交
6219 6220 6221 6222 6223
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6224 6225 6226
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6227
                                :attr:`out_shape` and :attr:`scale` specifying
6228 6229 6230 6231 6232 6233 6234
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6235 6236
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6237 6238 6239

    Returns:
        ${out_comment}.
6240 6241 6242 6243 6244

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6245 6246
    """

6247
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6248 6249


6250
@templatedoc(op_type="nearest_interp")
6251 6252 6253 6254 6255
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6256
    """
6257
    Resize input by performing nearest neighbor interpolation in both the
6258 6259
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6260 6261
    out_shape and scale in priority order.

6262
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6263
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6264 6265 6266 6267 6268

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6269

Y
yuyang18 已提交
6270 6271 6272 6273 6274
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6275 6276 6277
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6278
                                :attr:`out_shape` and :attr:`scale` specifying
6279 6280 6281 6282 6283 6284 6285
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6286 6287
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6288 6289 6290

    Returns:
        ${out_comment}.
6291 6292 6293 6294 6295

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6296 6297
    """

6298
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6299 6300 6301 6302


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6303 6304 6305
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6306 6307 6308 6309 6310 6311 6312
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6313
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6314

6315
    Returns:
Q
update  
qiaolongfei 已提交
6316
        Variable: The output is a 4-D tensor of the shape
6317
        (num_batches, channls, out_h, out_w).
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6328 6329 6330
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6331 6332 6333
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6334 6335
def gather(input, index):
    """
Q
qiaolongfei 已提交
6336 6337
    **Gather Layer**

6338
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6339 6340 6341 6342
    of X indexed by `index` and concatenate them together.

    .. math::

6343
        Out = X[Index]
W
whs 已提交
6344 6345 6346 6347 6348 6349 6350


    .. code-block:: text


                Given:

6351 6352
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6363
        input (Variable): The source input with rank>=1.
W
whs 已提交
6364 6365 6366 6367 6368 6369
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6370

W
whs 已提交
6371 6372 6373 6374 6375 6376
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6377
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6378 6379 6380 6381 6382 6383 6384 6385
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6417
    out = helper.create_variable_for_type_inference(dtype)
6418 6419 6420 6421 6422 6423 6424 6425 6426
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6477
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6500

6501 6502 6503
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6504
    """
F
stash  
fengjiayi 已提交
6505
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6506
    dtype = x.dtype
X
Xin Pan 已提交
6507
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6508
    if seed is None:
6509
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6510
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6511
    if isinstance(seed, int):
F
fengjiayi 已提交
6512 6513 6514 6515 6516
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6517 6518 6519 6520
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6521
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6522 6523
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6524 6525
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6526
    return out
W
whs 已提交
6527 6528


6529
def log(x, name=None):
W
wanghaoshuang 已提交
6530 6531 6532 6533 6534
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6535
        Out = \\ln(x)
W
wanghaoshuang 已提交
6536 6537

    Args:
6538
        x (Variable): Input tensor.
6539 6540
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6541 6542 6543 6544 6545 6546 6547 6548

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6549
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6550 6551
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6552
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6553
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6554
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6555 6556 6557
    return out


6558
def relu(x, name=None):
W
wanghaoshuang 已提交
6559 6560
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6561
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6562 6563 6564 6565
    the tensor elementwise.

    .. math::

6566
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6567 6568

    Args:
6569
        x (Variable): The input tensor.
6570 6571
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6572 6573 6574 6575 6576 6577 6578 6579

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6580
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6581 6582
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6583
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6584
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6585
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6586
    return out
6587 6588


C
chengduo 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6630 6631 6632
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6633 6634 6635 6636
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6637
    .. math::
6638 6639

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6640

6641
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6642 6643 6644 6645 6646
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6647
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6648
                           Its shape should be the same as input.
6649
        num_classes (int): The possible number of labels.
W
whs 已提交
6650 6651 6652 6653

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6654
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6655 6656 6657 6658

    Examples:

        .. code-block:: python
6659

W
whs 已提交
6660 6661 6662 6663
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6664 6665 6666
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6667 6668
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6669 6670
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6671
        outputs={
W
whs 已提交
6672 6673 6674
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6675 6676 6677
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6752
            isinstance(shape, Variable)):
6753 6754 6755 6756 6757
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6758
    out = helper.create_variable_for_type_inference(x.dtype)
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6776 6777


W
whs 已提交
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6795

W
whs 已提交
6796
              out_shape = [2, 3, 5, 5]
6797

W
whs 已提交
6798
          Step 1:
6799

W
whs 已提交
6800 6801 6802
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6803

W
whs 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6874
            isinstance(out_shape, Variable)):
W
whs 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6896 6897 6898 6899 6900 6901 6902 6903
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6904

6905 6906
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6907

6908 6909 6910 6911
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6912

6913 6914 6915 6916 6917
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6918 6919 6920

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6956
    out = helper.create_variable_for_type_inference("float32")
6957 6958 6959 6960 6961 6962 6963 6964

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6965 6966


M
minqiyang 已提交
6967 6968
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6969
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6970
    which compares left score and right score passed in.
M
minqiyang 已提交
6971
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6972 6973 6974 6975 6976 6977

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6978
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6979 6980
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6981
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6982 6983 6984
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6985
       Variable: The ranking loss.
M
minqiyang 已提交
6986
    Raises:
M
minqiyang 已提交
6987
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6988 6989 6990 6991 6992 6993 6994
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6995
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6996 6997 6998 6999 7000 7001
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7002 7003
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
7029

W
whs 已提交
7030 7031
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
7032

W
whs 已提交
7033
      Case 0:
M
minqiyang 已提交
7034

W
whs 已提交
7035 7036 7037
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
7038

W
whs 已提交
7039 7040 7041
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7042

W
whs 已提交
7043
      Case 1:
M
minqiyang 已提交
7044

W
whs 已提交
7045 7046
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
7047

W
whs 已提交
7048 7049 7050
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7051

W
whs 已提交
7052
      Case 2:
M
minqiyang 已提交
7053

W
whs 已提交
7054 7055
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
7056

W
whs 已提交
7057 7058 7059
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7060 7061


W
whs 已提交
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7088
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7115 7116 7117 7118 7119

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7120 7121
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7122 7123
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7124
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7145 7146 7147 7148 7149

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7150 7151
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7152 7153
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7154
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7175 7176 7177 7178 7179

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7180 7181
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7182 7183
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7184
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7206 7207 7208 7209 7210

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7211
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7212
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7213 7214
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7215
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7238 7239 7240 7241 7242

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7243 7244
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7245 7246
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7247
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7269 7270 7271 7272 7273

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7274 7275
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7276 7277
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7278
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7279 7280 7281 7282 7283 7284 7285 7286
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7287 7288 7289 7290
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7291
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7292 7293 7294

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7295 7296
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7297 7298 7299 7300
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7301
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7302
                       will be named automatically.
J
jerrywgz 已提交
7303 7304 7305 7306 7307 7308 7309 7310

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7311
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7325
        attr=helper.param_attr,
J
jerrywgz 已提交
7326 7327 7328 7329
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7330
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7331 7332 7333 7334 7335 7336 7337 7338 7339
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7350
    Returns:
7351
        output(${out_type}): ${out_comment}
7352 7353 7354 7355 7356 7357 7358

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7359 7360
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7361
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7380
    Returns:
7381
        output(${out_type}): ${out_comment}
7382 7383 7384 7385 7386 7387 7388

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7389 7390
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7391
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7409
    Returns:
7410
        output(${out_type}): ${out_comment}
7411 7412 7413 7414 7415 7416 7417

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7418 7419
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7420
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7421 7422 7423 7424 7425 7426 7427 7428
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7442

7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7453 7454
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7470
        ValueError: If axis is not in range [0, rank(x)].
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7487 7488
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7489
    helper.append_op(
7490
        type='flatten2',
7491
        inputs={"X": x},
7492 7493
        outputs={'Out': out,
                 'XShape': x_shape},
7494 7495
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7496 7497


C
chenweihang 已提交
7498
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7499
    """
C
chenweihang 已提交
7500
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7501
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7502 7503
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7504

C
chenweihang 已提交
7505 7506 7507 7508
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7509
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7510 7511 7512 7513 7514 7515
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7516
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7517 7518 7519
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7520 7521 7522
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7534 7535
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7536 7537 7538 7539 7540 7541
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7542
    return out
7543

7544

S
sneaxiy 已提交
7545 7546 7547 7548 7549 7550 7551 7552 7553
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7554

S
sneaxiy 已提交
7555
    .. math::
7556

S
sneaxiy 已提交
7557 7558 7559
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7560
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7561 7562 7563 7564
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7565 7566 7567
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7568 7569
    Returns:
        Variable: The output sequence mask.
7570

S
sneaxiy 已提交
7571 7572
    """

Q
qingqing01 已提交
7573
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7574
    if name is None:
X
Xin Pan 已提交
7575
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7576
    else:
X
Xin Pan 已提交
7577
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7578

Q
qingqing01 已提交
7579 7580 7581
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7582 7583
        outputs={'Y': out},
        attrs={
7584
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7585 7586 7587
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7588 7589


X
Xin Pan 已提交
7590
def stack(x, axis=0):
S
sneaxiy 已提交
7591 7592 7593 7594
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7595 7596 7597 7598 7599 7600 7601

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7602
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7603
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7604 7605

    Args:
7606
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7607
        axis (int|None): The axis along which all inputs are stacked.
7608

S
sneaxiy 已提交
7609 7610
    Returns:
        Variable: The stacked variable.
7611

S
sneaxiy 已提交
7612 7613
    """

X
Xin Pan 已提交
7614 7615 7616 7617 7618 7619
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7620
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7621
    helper.append_op(
S
sneaxiy 已提交
7622 7623
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7624

X
Xin Pan 已提交
7625
    return out
D
dzhwinter 已提交
7626 7627 7628 7629 7630 7631 7632


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7633

D
dzhwinter 已提交
7634 7635 7636
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7637
    raised.
D
dzhwinter 已提交
7638 7639

    Args:
M
minqiyang 已提交
7640
        x (Variable): Input variable.
D
dzhwinter 已提交
7641 7642
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7643

D
dzhwinter 已提交
7644 7645
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7646

D
dzhwinter 已提交
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7658
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7659 7660 7661 7662 7663 7664 7665 7666

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7679

W
whs 已提交
7680 7681 7682 7683
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7684

W
whs 已提交
7685
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7686

W
whs 已提交
7687
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7688

W
whs 已提交
7689 7690 7691 7692
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7693

W
whs 已提交
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7710
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7711 7712 7713 7714 7715 7716
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7717 7718


G
fix  
gongweibao 已提交
7719 7720 7721
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7722
@templatedoc()
G
fix  
gongweibao 已提交
7723 7724 7725 7726 7727 7728 7729 7730 7731
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7732
    ${comment}
G
fix  
gongweibao 已提交
7733 7734

    Args:
G
gongweibao 已提交
7735 7736 7737
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7738
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7739 7740 7741
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7742 7743
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7744
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7745 7746 7747 7748

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7749
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7766 7767


G
gongweibao 已提交
7768
@templatedoc()
X
Xin Pan 已提交
7769
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7770
    """
G
gongweibao 已提交
7771
    ${comment}
G
fix  
gongweibao 已提交
7772 7773

    Args:
G
gongweibao 已提交
7774 7775 7776 7777
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7778 7779 7780
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7781
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7782 7783 7784 7785

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7786
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7797
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7798 7799 7800 7801 7802
        })

    return out


G
gongweibao 已提交
7803
@templatedoc()
G
fix  
gongweibao 已提交
7804
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7805
    """
G
gongweibao 已提交
7806
    ${comment}
G
fix  
gongweibao 已提交
7807 7808

    Args:
G
gongweibao 已提交
7809 7810 7811 7812
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7813
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7814 7815

    Returns:
G
gongweibao 已提交
7816
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7817 7818 7819 7820

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7821
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7833
@templatedoc()
G
fix  
gongweibao 已提交
7834 7835 7836 7837 7838 7839 7840 7841 7842
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7843
    ${comment}
G
fix  
gongweibao 已提交
7844 7845

    Args:
G
gongweibao 已提交
7846 7847
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7848
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7849 7850 7851 7852
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7853
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7854 7855

    Returns:
G
gongweibao 已提交
7856
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7857 7858 7859
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7860
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7879
@templatedoc()
X
Xin Pan 已提交
7880
def sum(x):
G
fix  
gongweibao 已提交
7881
    """
G
gongweibao 已提交
7882
    ${comment}
G
fix  
gongweibao 已提交
7883 7884

    Args:
G
gongweibao 已提交
7885
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7886 7887

    Returns:
G
gongweibao 已提交
7888
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7889 7890 7891
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7892 7893
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7894 7895 7896 7897
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7898
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7899 7900 7901 7902

    return out


G
gongweibao 已提交
7903
@templatedoc()
G
fix  
gongweibao 已提交
7904 7905
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7906
    ${comment}
G
fix  
gongweibao 已提交
7907 7908

    Args:
G
gongweibao 已提交
7909 7910 7911 7912
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7913 7914

    Returns:
G
gongweibao 已提交
7915
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7916 7917 7918 7919

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7920 7921
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7933
@templatedoc()
G
fix  
gongweibao 已提交
7934 7935
def shape(input):
    """
G
gongweibao 已提交
7936
    ${comment}
G
fix  
gongweibao 已提交
7937 7938

    Args:
G
gongweibao 已提交
7939
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7940 7941

    Returns:
G
gongweibao 已提交
7942
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7943 7944 7945 7946

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7947 7948
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7949
    helper.append_op(
G
fix  
gongweibao 已提交
7950
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7951 7952

    return out
G
merge  
gongweibao 已提交
7953 7954


S
sneaxiy 已提交
7955 7956 7957 7958 7959 7960 7961 7962
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7963 7964
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7965
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7966 7967 7968
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7969

S
sneaxiy 已提交
7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7981
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7982 7983 7984 7985 7986 7987 7988 7989
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7990
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7991
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7992 7993 7994 7995 7996 7997

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7998
    if name is None:
X
Xin Pan 已提交
7999
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8000 8001 8002
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8013
    return helper.append_activation(out)
S
sneaxiy 已提交
8014 8015


X
Xin Pan 已提交
8016
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8017 8018 8019
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8020
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8021 8022 8023
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8024
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8025 8026 8027
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8028
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8029 8030 8031
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8032
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8033 8034 8035
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8036
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8037 8038 8039
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8040
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8052 8053
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8054
        ])
M
minqiyang 已提交
8055 8056


8057
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8058 8059
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8060 8061
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8062 8063 8064

    if out is None:
        if name is None:
X
Xin Pan 已提交
8065
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8081
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8093 8094 8095 8096 8097 8098 8099 8100 8101

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8102 8103 8104 8105 8106 8107 8108
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8109
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8121 8122 8123 8124 8125 8126 8127 8128 8129

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8130 8131 8132 8133 8134 8135 8136
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8137
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8149 8150 8151 8152 8153 8154 8155 8156 8157

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8158 8159 8160 8161 8162 8163 8164
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8165
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8176 8177 8178 8179 8180 8181 8182

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8183 8184 8185 8186
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8202 8203 8204 8205 8206 8207 8208

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8209 8210 8211 8212 8213
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8214 8215 8216 8217
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8241 8242 8243 8244 8245 8246 8247

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8248 8249 8250 8251 8252
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8253 8254 8255 8256
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8257 8258 8259 8260 8261 8262 8263 8264

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8283
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8313
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8323 8324
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8347
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8377
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8388 8389


J
JiabinYang 已提交
8390
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8391
    """
J
JiabinYang 已提交
8392
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8393 8394 8395

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8396
    The attr blocksize indicates the input block size.
8397 8398

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8399
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8400 8401

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8402
    (but keeping all data)
J
JiabinYang 已提交
8403

J
JiabinYang 已提交
8404
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8405
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8406 8407 8408 8409 8410
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8411
    Args:
J
JiabinYang 已提交
8412
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8413
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8414 8415

    Returns:
J
JiabinYang 已提交
8416
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8417 8418

    Raises:
J
JiabinYang 已提交
8419
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8420 8421 8422 8423 8424 8425

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8426
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8427
                x=data, blocksize=2)
J
JiabinYang 已提交
8428 8429
    """

J
JiabinYang 已提交
8430
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8431

J
JiabinYang 已提交
8432 8433
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8434 8435

    if name is None:
J
JiabinYang 已提交
8436 8437
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8438 8439 8440 8441 8442
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8443
        type="space_to_depth",
J
JiabinYang 已提交
8444
        inputs={"X": x},
J
JiabinYang 已提交
8445
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8446
        outputs={"Out": out})
J
JiabinYang 已提交
8447 8448
    return out

J
JiabinYang 已提交
8449

S
sneaxiy 已提交
8450 8451
@templatedoc()
def sequence_reverse(x, name=None):
8452
    """
S
sneaxiy 已提交
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8464
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8475 8476


8477 8478 8479 8480 8481 8482
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8483

8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8503
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8516 8517


B
barrierye 已提交
8518
def similarity_focus(input, axis, indexes, name=None):
8519
    """
B
barrierye 已提交
8520
    SimilarityFocus Operator
B
barrierye 已提交
8521 8522

    Generate a similarity focus mask with the same shape of input using the following method:
8523 8524 8525
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8526
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8527 8528 8529 8530 8531 8532 8533
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8534
       each index.
B
barrierye 已提交
8535 8536 8537 8538
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8588
    Args:
8589
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8590
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8591
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8592
            1, 2 or 3.
B
barrierye 已提交
8593
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8594 8595

    Returns:
8596
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8597
            as the input.
8598

B
barrierye 已提交
8599 8600 8601
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8602 8603
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8616 8617 8618 8619 8620
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8621 8622 8623 8624 8625 8626 8627
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8628 8629


M
minqiyang 已提交
8630 8631
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8632 8633
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8634 8635
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8674
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8675
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8676 8677 8678 8679 8680 8681 8682 8683 8684

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8685 8686
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8687 8688
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8689 8690 8691 8692 8693 8694 8695
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8696 8697


D
dengkaipeng 已提交
8698
@templatedoc()
8699 8700
def grid_sampler(x, grid, name=None):
    """
8701
    This operation samples input X by using bilinear interpolation based on
8702
    flow field grid, which is usually gennerated by affine_grid. The grid of
8703 8704 8705 8706
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8707
    interpolation value of 4 nearest corner points.
8708 8709 8710 8711 8712 8713 8714 8715

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8716
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8746 8747

    Args:
8748 8749 8750
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8751 8752

    Returns:
8753
        out(Variable): Output of shape [N, C, H, W] data samples input X
8754 8755 8756 8757 8758 8759 8760 8761 8762
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8763 8764 8765 8766 8767 8768 8769 8770 8771
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8772
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8773 8774
    ipts = {'X': x, 'Grid': grid}

8775
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8776 8777 8778
    return out


G
gmcather 已提交
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8873 8874 8875 8876 8877 8878 8879 8880 8881 8882


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8883
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8884

Q
Qiao Longfei 已提交
8885
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8886 8887 8888
    For example:

    .. math::
8889
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8890

Q
Qiao Longfei 已提交
8891
    In this formula:
8892 8893
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8894
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8895
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8896 8897 8898
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8899 8900
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8901 8902 8903
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8904
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8905
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8906
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8907 8908 8909 8910
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8911
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8912 8913 8914 8915

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8916
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8917 8918
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8919
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8920 8921 8922 8923

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8924
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)