distribute_transpiler.py 117.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
tianshuo78520a 已提交
17
2. rename split grad variables to add trainer_id suffix ".trainer_%d".
18
3. modify trainer program add split_op to each grad variable.
T
tianshuo78520a 已提交
19 20 21
4. append send_op to send split variables to server and
5. add recv_op to fetch params(split blocks or origin param) from server.
6. append concat_op to merge split blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

1
123malin 已提交
31
import os
T
tangwei12 已提交
32
import sys
T
typhoonzero 已提交
33
import math
T
tangwei12 已提交
34 35
from functools import reduce

36
import collections
T
tangwei12 已提交
37
import six
Q
Qiao Longfei 已提交
38
import logging
39

T
tangwei12 已提交
40 41
import numpy as np

42
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
43
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
44
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
45 46 47
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
48
from ..distribute_lookup_table import find_distributed_lookup_table
49
from . import collective
50

51 52
LOOKUP_TABLE_TYPE = ["lookup_table", "lookup_table_v2"]
LOOKUP_TABLE_GRAD_TYPE = ["lookup_table_grad", "lookup_table_v2_grad"]
C
Chengmo 已提交
53 54
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
55
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
56 57
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
58
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
59
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
60 61 62 63 64 65
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


1
123malin 已提交
66 67 68 69 70 71 72
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


73 74 75
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
76 77


T
typhoonzero 已提交
78
class VarBlock:
79

T
typhoonzero 已提交
80 81 82 83 84
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
85

T
typhoonzero 已提交
86 87
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
88 89


90 91 92 93
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
94
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
95
    """
96 97 98 99 100 101
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
102
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
103 104 105

    Args:
        var_list (list): List of variables.
106 107
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
T
tianshuo78520a 已提交
108
        min_block_size (int): Minimum split block size.
109
    Returns:
110
        blocks (list[(varname, block_id, current_block_size)]): A list
111
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
112 113 114
    """
    blocks = []
    for var in var_list:
115
        split_count = slice_count
T
typhoonzero 已提交
116 117 118 119
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
120
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
121 122 123 124 125 126 127 128 129
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
130
        # update split_count after aligning
T
typhoonzero 已提交
131
        split_count = int(math.ceil(var_numel / float(block_size)))
132
        for block_id in range(split_count):
133 134
            curr_block_size = min(block_size,
                                  var_numel - ((block_id) * block_size))
T
typhoonzero 已提交
135 136 137 138 139
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
140 141
class DistributeTranspilerConfig(object):
    """
142
        :api_attr: Static Graph
S
swtkiwi 已提交
143

144
    A configuration class that provide support for transpiler distributed jobs.
145 146 147
    Some important parameters are explained as follows:


H
haowang101779990 已提交
148 149
    .. py:attribute:: slice_var_up (bool)

150
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
151 152 153

    .. py:attribute:: split_method (PSDispatcher)

154 155 156 157
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
158 159 160

    .. py:attribute:: min_block_size (int)

T
tianshuo78520a 已提交
161
          Minimum number of split elements in block, default is 8192.
H
haowang101779990 已提交
162 163

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
tianshuo78520a 已提交
164
          We can use bandwidth efficiently when data size is larger than 2MB.If you
165 166 167 168
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
169

170 171 172
    Examples:
        .. code-block:: python

173 174 175
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

176 177
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
178 179
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
180 181 182 183 184
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
185
    enable_dc_asgd = False
186
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
187
    mode = "pserver"
188
    print_log = False
W
Wu Yi 已提交
189
    wait_port = True
Q
Qiao Longfei 已提交
190
    # split the send recv var in runtime
1
123malin 已提交
191 192
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
193

194 195
    # half_async
    half_async = False
T
tangwei12 已提交
196
    completely_not_async = False
197

198 199 200 201
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

202
    nccl_comm_num = 1
203 204
    # The picture here illustrates the principle:
    # https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
205
    use_hierarchical_allreduce = False
206
    # Nccl ranks in a node when use hierarchical allreduce, it's set to gpu cards' number in most cases.
207 208
    hierarchical_allreduce_inter_nranks = 0

209
    # if mode is collective
210
    # supported modes: grad_allreduce, local_sgd
211 212
    collective_mode = None

213 214 215 216 217
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
218
        return self.__runtime_split_send_recv
219 220 221 222 223

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
224
        if value and self.__sync_mode:
225 226 227
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
228
        self.__runtime_split_send_recv = value
229 230 231

    @property
    def sync_mode(self):
1
123malin 已提交
232
        return self.__sync_mode
233 234 235 236 237

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
238
        if value and self.__runtime_split_send_recv:
239 240 241
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
242 243 244 245
        self.__sync_mode = value


class ServerRuntimeConfig(object):
246

1
123malin 已提交
247 248 249 250 251 252 253
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
254

G
gongweibao 已提交
255

Y
gen rst  
yi.wu 已提交
256
class DistributeTranspiler(object):
Y
yi.wu 已提交
257
    """
258
        :api_attr: Static Graph
S
swtkiwi 已提交
259

Y
yi.wu 已提交
260 261 262
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
263
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
264

W
Wu Yi 已提交
265 266 267 268 269 270 271 272 273
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
274 275 276 277

    Examples:
        .. code-block:: python

278 279
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
280 281 282 283 284 285 286 287
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
288 289 290 291 292 293
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
294
            role = "PSERVER"
T
Tink_Y 已提交
295 296 297 298 299 300
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
301
                                                                pserver_program)
T
Tink_Y 已提交
302 303 304 305
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
306 307
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
308 309
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
310
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
311
            t = fluid.DistributeTranspiler(config=config)
312
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
313
            exe = fluid.ParallelExecutor(
314 315 316
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
317 318
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
319
    """
Y
Yancey1989 已提交
320

G
gongweibao 已提交
321 322 323 324 325
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
326
        self._set_server_config()
G
gongweibao 已提交
327 328 329 330

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

T
tangwei12 已提交
331
        if self.config.sync_mode or self.config.completely_not_async:
1
123malin 已提交
332 333 334 335 336 337
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

338 339 340
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
341 342
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
343
        self.counter_var = None
G
gongweibao 已提交
344

1
123malin 已提交
345 346 347 348 349 350 351 352 353 354
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
355 356 357 358
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
359 360
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
361 362 363 364 365 366
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
367 368
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
369 370 371

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
372 373 374 375 376 377 378 379 380

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
381 382 383 384
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
385 386 387 388 389
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
390 391 392 393 394
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
395 396 397 398 399 400
                    "trainers":
                    trainers.split(","),
                    "trainer_id":
                    trainer_id,
                    "nccl_comm_num":
                    self.config.nccl_comm_num,
401 402 403 404
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
405 406 407 408 409
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

410 411 412 413 414 415 416 417 418 419 420 421
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
422
        elif collective_mode != "single_process_multi_thread":
423 424
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
425 426
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
427 428 429 430 431 432 433 434 435 436
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
437
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
438
        elif collective_mode == 'local_sgd':
439
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
440 441
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
442 443 444
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

445 446 447 448 449 450
        transpiler.transpile(startup_program=startup_program,
                             main_program=main_program,
                             rank=trainer_id,
                             endpoints=endpoints,
                             current_endpoint=current_endpoint,
                             wait_port=wait_port)
451

Q
Qiao Longfei 已提交
452
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
453
        sparse_update_ops = []
454
        sparse_update_op_types = ["lookup_table", "nce", "lookup_table_v2"]
Q
Qiao Longfei 已提交
455 456
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
457
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
458 459 460
                sparse_update_ops.append(op)
        return sparse_update_ops

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

484
            if op_type in LOOKUP_TABLE_TYPE:
485 486 487 488 489 490 491 492 493 494 495 496
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
522 523 524 525
                        inputs={
                            "Ids": inputs,
                            'W': w
                        },
526 527 528 529 530 531
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
532 533
                            "trainer_id": self.trainer_id,
                            "lookup_table_version": op_type
534 535 536 537 538
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
539

540 541
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
542 543 544 545 546 547

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
548

549 550 551 552 553
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
554
                  sync_mode=True,
W
Wu Yi 已提交
555 556
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
557
        """
558
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
559 560 561 562 563 564

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
565 566
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
567 568
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
569 570 571
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
572
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
573 574
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
575 576 577
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
578 579 580 581 582 583 584 585 586 587 588

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
589
        """
590 591 592 593 594 595 596 597 598

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

599 600
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
601 602
        if startup_program is None:
            startup_program = default_startup_program()
603
        self.origin_program = program
W
Wu Yi 已提交
604 605
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
606

W
Wu Yi 已提交
607 608
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
609
            self.origin_program._trainers_endpoints = trainers.split(",")
610 611
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
612 613 614 615 616
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
617
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
618 619 620
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
621 622
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(
                        trainers_num, self.config.hierarchical_allreduce_inter_nranks)
623 624

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
625 626
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(
                        trainers_num, self.config.hierarchical_allreduce_inter_nranks)
627 628 629 630

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

631 632 633 634 635
            self._transpile_nccl2(trainer_id,
                                  trainers,
                                  current_endpoint,
                                  startup_program=startup_program,
                                  wait_port=self.config.wait_port)
W
Wu Yi 已提交
636 637
            return

638 639 640 641 642 643 644 645 646 647 648
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

649
        self.trainer_num = trainers
650
        self.sync_mode = sync_mode
651 652 653
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
654
        self.vars_overview = VarsDistributed()
655 656
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
657
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
658 659
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
660
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
661
        self.grad_name_to_param_name = dict()
662 663
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
664
            self.grad_name_to_param_name[grad_var.name] = param_var.name
665

Q
Qiao Longfei 已提交
666
        # get all sparse update ops
Q
Qiao Longfei 已提交
667
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
668
            self.origin_program)
Q
Qiao Longfei 已提交
669
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
670
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
671
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
672

T
tangwei12 已提交
673 674 675
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
676
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
677 678 679
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

T
tianshuo78520a 已提交
680 681
        # split and create vars, then put split vars in dicts for later use.
        # step 1: split and create vars, then put split vars in dicts for later use.
G
gongweibao 已提交
682
        self._init_splited_vars()
683

G
gongweibao 已提交
684
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
685
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
686
        send_vars = []
687 688 689 690 691 692

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
693
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
694

G
gongweibao 已提交
695
        if not self.config.slice_var_up:
696 697
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
698

699
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
700

701
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
702
            eplist = ps_dispatcher.dispatch(splited_vars)
703

G
gongweibao 已提交
704
            if not self.config.slice_var_up:
705 706
                assert (len(splited_vars) == 1)

707
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
708
            if len(splited_vars) == 1:
709
                splited_grad_varname = splited_vars[0].name
710 711 712
                index = find_op_by_output_arg(program.global_block(),
                                              splited_grad_varname,
                                              reverse=True)
713

Y
Yancey1989 已提交
714
            elif len(splited_vars) > 1:
715
                orig_var = program.global_block().vars[splited_grad_varname]
716 717 718
                index = find_op_by_output_arg(program.global_block(),
                                              splited_grad_varname,
                                              reverse=True)
719

Q
Qiao Longfei 已提交
720 721 722 723
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
724
            else:
725 726 727
                AssertionError(
                    "Can not insert the send op by original "
                    "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
728

729 730 731 732 733 734 735
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
736 737
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
738
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
739

Q
Qiao Longfei 已提交
740 741 742 743 744
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
T
tangwei12 已提交
745

746
                if self.config.completely_not_async and self.trainer_num > 1:
T
tangwei12 已提交
747 748 749 750 751 752
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
753 754 755 756 757
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

T
tianshuo78520a 已提交
758 759
            # get send op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name (split_by_ref and send
W
Wu Yi 已提交
760 761
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
762
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
763
                index=index + 1,
764
                type="send",
Q
Qiao Longfei 已提交
765
                inputs={"X": send_input_vars},
766
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
767
                attrs={
768 769 770 771 772 773 774 775
                    "epmap":
                    eplist,
                    "sections":
                    sections,
                    "send_varnames":
                    send_varnames,
                    RPC_OP_ROLE_ATTR_NAME:
                    RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
776 777 778
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
779
                    ]
Y
Yancey1989 已提交
780
                })
Y
update  
Yancey1989 已提交
781 782
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
783

784 785 786 787 788 789 790
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
791

792
        if not self.sync_mode:
1
123malin 已提交
793 794 795 796 797
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
798
                    # async mode, using communicator to merge and send
1
123malin 已提交
799 800 801 802 803 804 805 806 807
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
808 809 810 811 812 813 814 815 816 817 818 819
                        "epmap":
                        pserver_endpoints,
                        "sections":
                        sections,
                        "send_varnames":
                        send_varnames,
                        "merge_add":
                        True,
                        "use_send_handler":
                        False,
                        RPC_OP_ROLE_ATTR_NAME:
                        RPC_OP_ROLE_ATTR_VALUE,
1
123malin 已提交
820 821 822
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
823 824 825 826 827
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

828 829 830 831 832 833 834 835 836 837 838 839 840
            program.global_block().append_op(type="send_barrier",
                                             inputs={"X": list(input_deps)},
                                             outputs={"Out": send_barrier_out},
                                             attrs={
                                                 "endpoints":
                                                 pserver_endpoints,
                                                 "trainer_id":
                                                 self.trainer_id,
                                                 "half_async":
                                                 False,
                                                 RPC_OP_ROLE_ATTR_NAME:
                                                 RPC_OP_ROLE_ATTR_VALUE
                                             })
841 842 843 844 845 846 847 848 849 850 851 852 853 854

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
855

G
gongweibao 已提交
856
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
857
        recv_vars = []
Y
update  
Yancey1989 已提交
858
        for _, var in enumerate(send_vars):
859
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
860
        ps_dispatcher.reset()
Y
Yancey1989 已提交
861 862
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
863
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
864 865
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
866

867 868 869 870
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

871 872
        need_sparse_update_params = {}

Y
Yancey1989 已提交
873
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
874
        all_recv_outputs = []
875
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
876
            eps = []
Q
Qiao Longfei 已提交
877
            table_names = []
Y
Yancey1989 已提交
878 879 880
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
881
                table_names.append(var.name)
W
Wu Yi 已提交
882 883 884 885
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
886
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
887
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
888

T
tianshuo78520a 已提交
889 890
            # get recv op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name. ParallelExecutor
W
Wu Yi 已提交
891 892 893 894 895 896 897
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
898
            if param_varname in self.sparse_param_to_height_sections:
899 900 901 902 903
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

904
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
905
            else:
Q
Qiao Longfei 已提交
906 907 908
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
909
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
910
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
911
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
912

Q
Qiao Longfei 已提交
913 914 915 916 917
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
918 919 920 921 922 923 924 925
                        "epmap":
                        eps,
                        "recv_varnames":
                        recv_varnames,
                        "trainer_id":
                        self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME:
                        RPC_OP_ROLE_ATTR_VALUE,
Q
Qiao Longfei 已提交
926
                        OP_ROLE_VAR_ATTR_NAME:
927
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
928
                    })
T
typhoonzero 已提交
929

930 931
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
932
        if self.sync_mode:
W
Wu Yi 已提交
933
            # form a WAW dependency
934 935 936 937 938 939 940 941 942 943 944
            program.global_block().append_op(type="fetch_barrier",
                                             inputs={"X": fetch_barrier_input},
                                             outputs={"Out": all_recv_outputs},
                                             attrs={
                                                 "endpoints":
                                                 pserver_endpoints,
                                                 "trainer_id":
                                                 self.trainer_id,
                                                 RPC_OP_ROLE_ATTR_NAME:
                                                 RPC_OP_ROLE_ATTR_VALUE
                                             })
Y
Yancey1989 已提交
945

946
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
947 948
            if len(splited_var) <= 1:
                continue
949
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
950
            if param_varname not in self.sparse_param_to_height_sections:
951
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
952 953 954 955 956 957 958 959
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
960

G
gongweibao 已提交
961 962
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

963
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
964 965
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
966
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
967

968 969 970
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
997 998
                raise ValueError("table init op num should be 1, now is " +
                                 str(init_op_num))
T
tangwei12 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1043
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1044
        """
1045
        Get transpiled trainer side program. The program on trainer side compared with origin program
C
Chengmo 已提交
1046 1047 1048
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
1049
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op``
1050

C
Chengmo 已提交
1051
        Args:
1052
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program,
C
Chengmo 已提交
1053
            default is True
Y
yi.wu 已提交
1054 1055 1056

        Returns:
            Program: trainer side program.
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1069
        """
T
typhoonzero 已提交
1070
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1071
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1072

T
tangwei12 已提交
1073 1074 1075 1076
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1077 1078
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1079
        self._delete_trainer_optimizer(is_startup=False)
1080

1081
        self.origin_program.__str__()
T
tangwei12 已提交
1082
        self.startup_program.__str__()
G
gongweibao 已提交
1083

W
Wu Yi 已提交
1084 1085 1086
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1087
        return self.origin_program
T
typhoonzero 已提交
1088

W
Wu Yi 已提交
1089
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1090 1091 1092 1093
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1094
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1095
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1096 1097 1098 1099

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1100
        startup_program = self.startup_program
G
gongweibao 已提交
1101 1102 1103

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1104 1105 1106
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
1107
        # self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1108

M
minqiyang 已提交
1109
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1110 1111
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1132
                inputs={"X": []},
G
gongweibao 已提交
1133 1134 1135
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1136
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1137 1138 1139
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1140 1141
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1142 1143 1144
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1145
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1146 1147
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1148
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1149 1150 1151
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1152
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1153 1154
            if varname in sparse_table_names:
                continue
T
tianshuo78520a 已提交
1155
            # add concat ops to merge split parameters received from parameter servers.
G
gongweibao 已提交
1156 1157
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1158
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1159
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1160 1161
                orig_param = startup_program.global_block().vars[varname]
            else:
1162 1163
                origin_param_var = self.origin_program.global_block(
                ).vars[varname]
W
Wu Yi 已提交
1164 1165 1166 1167 1168 1169
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1170 1171 1172 1173 1174 1175 1176 1177
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1178 1179
    def get_pserver_program(self, endpoint):
        """
1180
        Get parameter server side program.The program on pserver side compared with origin program
C
Chengmo 已提交
1181 1182
        has following difference:

1183
            - Only the following op is included: optimize-related op and communication-related op
C
Chengmo 已提交
1184 1185
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1186

Y
yi.wu 已提交
1187 1188
        Args:
            endpoint (str): current parameter server endpoint.
1189

Y
yi.wu 已提交
1190 1191
        Returns:
            Program: the program for current parameter server to run.
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1206
        """
Y
yi.wu 已提交
1207 1208 1209 1210
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1211 1212 1213
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1214 1215
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1216
        pserver_program.random_seed = self.origin_program.random_seed
1217 1218
        pserver_program._copy_dist_param_info_from(self.origin_program)

1219
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1220 1221 1222 1223 1224 1225 1226 1227
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1228 1229 1230 1231 1232
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
T
tangwei12 已提交
1242
            if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
1243
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1253

Q
qiaolongfei 已提交
1254
        # step 3
1255
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1256 1257 1258
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1259
        # step 3.2
T
typhoonzero 已提交
1260 1261 1262 1263
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1264 1265
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1266
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1267
        # step 3.3
W
Wu Yi 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1286
        # Iterate through the ops, and if an op and the optimize ops
1287
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1288
        # append it into the sub program.
T
typhoonzero 已提交
1289 1290 1291

        global_ops = []

1292 1293 1294
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1295 1296
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1297
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1298
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1299 1300
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1301
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1302
                self._append_pserver_non_opt_ops(block, op)
1303

Y
Yancey1989 已提交
1304
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1305 1306 1307 1308 1309 1310 1311 1312
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1313
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1314 1315 1316

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1317
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1318 1319

            # clone ops
Y
Yancey1989 已提交
1320 1321
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1322
                # clone sub_block of op
Y
Yancey1989 已提交
1323
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1324 1325

            # reset the block of op
W
Wu Yi 已提交
1326
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1327

1328
        # append lr decay ops to the child block if exists
1329
        lr_ops = self._get_lr_ops()
1330 1331
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1332 1333

        lr_decay_block_id = -1
1334
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1335
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1336
                pserver_program.num_blocks - 1)
1337
            optimize_blocks.append(lr_decay_block)
1338
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1339
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1340
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1341 1342
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1343
            lr_decay_block_id = lr_decay_block.idx
1344

T
typhoonzero 已提交
1345
        # append op to the current block
Q
qiaolongfei 已提交
1346
        grad_to_block_id = []
Q
qiaolongfei 已提交
1347
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1348
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1349
            per_opt_block = pserver_program._create_block(pre_block_idx)
1350
            optimize_blocks.append(per_opt_block)
1351
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1352
            # append grad merging ops before clip and weight decay
1353 1354
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1355
            for _, op in enumerate(self.optimize_ops):
1356
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1357
                # merged_var should be the input var name of L2Decay
1358
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
1359 1360
                if op.attr(
                        OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name:
1361 1362 1363
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1364 1365 1366 1367 1368 1369
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1370
                            op not in global_ops:
1371 1372 1373 1374 1375
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1376

1377
        # dedup grad to ids list
W
Wu Yi 已提交
1378
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1379
        # append global ops
1380
        if global_ops:
W
Wu Yi 已提交
1381
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1382
                pserver_program.num_blocks - 1)
1383
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1384
            for glb_op in global_ops:
X
Xi Chen 已提交
1385
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1386
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1387

1388
        # process distributed lookup_table
Q
qiaolongfei 已提交
1389
        prefetch_var_name_to_block_id = []
1390 1391
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1392
            table_opt_block = self._create_table_optimize_block(
1393
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1394
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1395
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1396
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1397 1398
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1399

T
tangwei12 已提交
1400
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1401 1402
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1403

1404
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1405 1406
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1407 1408 1409 1410 1411 1412
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1413
        attrs = {
1414
            "optimize_blocks": optimize_blocks,
1415
            "endpoint": endpoint,
1416
            "pserver_id": self.pserver_endpoints.index(endpoint),
1417
            "Fanin": self.trainer_num,
1
123malin 已提交
1418
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1419
            "grad_to_block_id": grad_to_block_id,
1420
            "sparse_grad_to_param": sparse_grad_to_param,
1421
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1422 1423 1424 1425
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1426
        }
T
tangwei12 已提交
1427 1428

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1429
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1430 1431
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1432

T
tangwei12 已提交
1433 1434 1435 1436
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1437
        # step5 append the listen_and_serv op
1438 1439 1440 1441
        pserver_program.global_block().append_op(type="listen_and_serv",
                                                 inputs={'X': recv_inputs},
                                                 outputs={},
                                                 attrs=attrs)
1442

W
Wu Yi 已提交
1443
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1444 1445
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1446 1447
        return pserver_program

W
Wu Yi 已提交
1448 1449 1450
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
1451
        The ``main_program`` returned by this function is consistent with the
C
Chengmo 已提交
1452
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1453 1454 1455

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1456

W
Wu Yi 已提交
1457 1458
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1473 1474
        """
        pserver_prog = self.get_pserver_program(endpoint)
1475 1476
        pserver_startup = self.get_startup_program(endpoint,
                                                   pserver_program=pserver_prog)
W
Wu Yi 已提交
1477 1478
        return pserver_prog, pserver_startup

1479 1480
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1481
                            pserver_program=None,
1482
                            startup_program=None):
T
typhoonzero 已提交
1483
        """
W
Wu Yi 已提交
1484 1485
        **Deprecated**

T
typhoonzero 已提交
1486 1487 1488
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1489 1490 1491

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1492 1493
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
T
tianshuo78520a 已提交
1494
                when initializing
1495

Y
yi.wu 已提交
1496 1497
        Returns:
            Program: parameter server side startup program.
1498 1499

        Examples:
1500 1501
            .. code-block:: python

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1513 1514
        """
        s_prog = Program()
W
Wu Yi 已提交
1515
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1516
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1528
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1529
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1530
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1531 1532 1533 1534
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1535
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1536 1537
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1548 1549

            if op_on_pserver:
1550 1551 1552
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1553
                if op.type in [
1554 1555
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1556
                ]:
W
Wu Yi 已提交
1557
                    op._set_attr("shape", list(new_outputs["Out"].shape))
1558 1559 1560 1561
                s_prog.global_block().append_op(type=op.type,
                                                inputs=new_inputs,
                                                outputs=new_outputs,
                                                attrs=op.all_attrs())
W
Wu Yi 已提交
1562 1563 1564 1565 1566
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
1567 1568 1569
                s_prog.global_block().append_op(type="assign",
                                                inputs={"X": startup_param_var},
                                                outputs={"Out": startup_tmpvar})
1570

T
typhoonzero 已提交
1571 1572
        return s_prog

1573 1574
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1575
        block_suffix = "block"
1576 1577 1578
        block_idx = 0
        offset = 0
        is_slice = False
1579

1580
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1581

1582 1583
        if not block_name:
            return is_slice, block_idx, offset
1584

1585 1586 1587 1588
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1589 1590 1591 1592 1593
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1594 1595 1596 1597 1598 1599 1600 1601 1602

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
1603

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1620 1621 1622 1623
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1661

Y
yi.wu 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1701
    def _init_splited_vars(self):
Y
yi.wu 已提交
1702
        # update these mappings for further transpile:
T
tianshuo78520a 已提交
1703 1704
        # 1. param_var_mapping: param var name -> [split params vars]
        # 2. grad_var_mapping: grad var name -> [split grads vars]
Y
yi.wu 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1725
        if self.config.slice_var_up:
Y
yi.wu 已提交
1726 1727
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
1728
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints),
G
gongweibao 已提交
1729
                                         self.config.min_block_size)
Y
yi.wu 已提交
1730
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1731 1732
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1733 1734 1735
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1736 1737 1738 1739
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1740 1741
        assert (len(grad_blocks) == len(param_blocks))

1742
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1743 1744
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1745 1746 1747 1748 1749 1750 1751 1752

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

1753 1754 1755 1756 1757 1758
                self.vars_overview.add_distributed_var(origin_var=orig_var,
                                                       slice_var=splited_var,
                                                       block_id=block_id,
                                                       offset=offset,
                                                       is_slice=is_slice,
                                                       vtype="Param")
1759

1760
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1761 1762 1763 1764
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1765
        # dict(grad_splited_var -> param_splited_var)
1766
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1767 1768 1769
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1770
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1771
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1772 1773

        # create mapping of endpoint -> split var to create pserver side program
1774
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1775
        [
1776 1777 1778 1779
            self.param_grad_ep_mapping.update({ep: {
                "params": [],
                "grads": []
            }}) for ep in self.pserver_endpoints
Y
yi.wu 已提交
1780 1781
        ]

1782
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1783 1784
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1785
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1786
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1787 1788
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1789 1790
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1791 1792 1793 1794 1795 1796

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1797 1798
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1799
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1800 1801 1802
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1803 1804
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1805 1806
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1807 1808 1809
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1810
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1811
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1812 1813

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1814
                    self.all_out_emb_vars.append(out_var)
1815 1816

                    # delete lookup_table_op
1817
                    delete_ops(program.global_block(), [op])
1818 1819 1820
                    # break for loop
                    break

S
seiriosPlus 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1867
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1868
        # 2. add split_ids_op and send_op to send gradient to pservers
1869

1870 1871
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1872
        table_grad_name = grad_var_name(self.table_name)
1873 1874 1875 1876
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1877
                program.global_block()._insert_op(
1878 1879 1880 1881 1882
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1883 1884
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1885
                program.global_block()._insert_op(
1886
                    index=op_index + 2,
1887
                    type="send",
1888
                    inputs={'X': self.trainer_side_table_grad_list},
1889 1890 1891 1892 1893
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1894
                    attrs={
1895 1896 1897 1898 1899 1900
                        "epmap":
                        pserver_endpoints,
                        "trainer_id":
                        self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME:
                        RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
1901 1902 1903 1904
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1905
                    })
1906 1907 1908 1909 1910 1911
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1912
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
1928 1929 1930 1931
            inputs={
                'Ids': pserver_ids,
                "W": table_var
            },
S
seiriosPlus 已提交
1932 1933 1934 1935 1936 1937
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
1938 1939
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" +
                                             str(prefetch_block.idx))
Q
qiaolongfei 已提交
1940
        return prefetch_var_name_to_block_id
1941 1942

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1943
                                     pre_block_idx, grad_to_block_id):
1944
        # STEP: create table optimize block
1945
        table_opt_block = pserver_program._create_block(pre_block_idx)
1946
        # create table param and grad var in pserver program
1947 1948
        # create table optimize block in pserver program
        table_opt_op = [
1949 1950
            op for op in self.optimize_ops if 'Param' in op.input_names
            and op.input("Param")[0] == self.table_name
1951 1952
        ][0]

Y
Yancey1989 已提交
1953 1954
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1955

T
tangwei12 已提交
1956
        zero_dim = int(
1957 1958
            math.ceil(origin_param_var.shape[0] /
                      float(len(self.pserver_endpoints))))
T
tangwei12 已提交
1959 1960 1961
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1962 1963
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1964
            shape=table_shape,
Y
Yancey1989 已提交
1965 1966 1967
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1968

1969 1970
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1971
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1972
            self.origin_program.global_block().vars[grad_var_name(
1973
                self.table_name)])
1974

1975 1976 1977
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1978

1979 1980 1981
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1982
            pserver_side_table_grad_list = [
1983 1984 1985 1986 1987 1988 1989 1990 1991
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1992
            # append sum op for pserver_side_table_grad_list
1993 1994
            table_opt_block.append_op(
                type="sum",
1995
                inputs={"X": pserver_side_table_grad_list},
1996 1997
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1998
        else:
T
tianshuo78520a 已提交
1999
            # in async_mode, for table gradient, it also need to be split to each parameter server
2000
            origin_grad_name = grad_var.name
2001 2002
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
2003 2004
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
2005
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
2006
            grad_var = pserver_program.global_block()._rename_var(
2007
                origin_grad_name, splited_grad_name)
2008 2009 2010 2011 2012 2013 2014

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
2015
        # only support sgd now
2016 2017 2018
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
2019
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
2020

2021 2022 2023
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

2024 2025
        return table_opt_block

T
tangwei12 已提交
2026 2027 2028 2029 2030
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

2031 2032 2033
        pserver_program.global_block().create_var(name="kLookupTablePath",
                                                  persistable=True,
                                                  type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
2034

W
Wu Yi 已提交
2035
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2036
        # this 'file_path' do not be used in save lookup table variable
2037 2038 2039 2040
        checkpoint_save_block.append_op(type='save',
                                        inputs={'X': [self.table_name]},
                                        outputs={},
                                        attrs={'file_path': "none"})
T
tangwei12 已提交
2041 2042 2043

        return checkpoint_save_block.idx

T
typhoonzero 已提交
2044 2045 2046 2047 2048
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2049
        Create vars for each split.
T
typhoonzero 已提交
2050 2051
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2052 2053 2054 2055
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2056
        Returns:
2057
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2058
                from original var name to each var split.
T
typhoonzero 已提交
2059
        """
2060 2061

        # varname->[(block_id, current_block_size)]
2062
        block_map = collections.OrderedDict()
2063

2064
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2065 2066
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2067
            if varname not in block_map:
T
typhoonzero 已提交
2068
                block_map[varname] = []
2069
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2070

T
tianshuo78520a 已提交
2071
        for varname, split in six.iteritems(block_map):
T
typhoonzero 已提交
2072
            orig_var = program.global_block().var(varname)
T
tianshuo78520a 已提交
2073
            if len(split) == 1:
2074
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2075
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2076
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2077
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2078 2079 2080 2081 2082
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2083
                continue
T
typhoonzero 已提交
2084
            var_mapping[varname] = []
T
typhoonzero 已提交
2085 2086 2087 2088
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2089

T
tianshuo78520a 已提交
2090
            for i, block in enumerate(split):
T
typhoonzero 已提交
2091
                size = block[1]
M
minqiyang 已提交
2092
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2093 2094 2095
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2096
                new_var_name = ""
2097
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2098
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2099
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2100 2101
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2102
                                   (varname, i)
T
typhoonzero 已提交
2103
                var = program.global_block().create_var(
T
typhoonzero 已提交
2104 2105
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2106
                    dtype=orig_var.dtype,
2107
                    type=orig_var.type,
T
tianshuo78520a 已提交
2108
                    shape=splited_shape)  # flattend split var
T
typhoonzero 已提交
2109
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2110
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2111
        return var_mapping
T
done  
typhoonzero 已提交
2112

2113
    def _clone_var(self, block, var, persistable=True):
2114 2115 2116 2117 2118 2119
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                lod_level=var.lod_level,
                                persistable=persistable)
T
done  
typhoonzero 已提交
2120

Q
Qiao Longfei 已提交
2121 2122 2123 2124 2125 2126 2127
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2128
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2129 2130
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2131
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2132
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2133
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2134 2135
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
            program.global_block()._insert_op(index=index + 1,
                                              type="split_selected_rows",
                                              inputs={"X": orig_var},
                                              outputs={"Out": splited_vars},
                                              attrs={
                                                  "height_sections":
                                                  height_sections,
                                                  RPC_OP_ROLE_ATTR_NAME:
                                                  DIST_OP_ROLE_ATTR_VALUE
                                              })
Y
update  
Yancey1989 已提交
2146
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
            program.global_block()._insert_op(index=index + 1,
                                              type="split_byref",
                                              inputs={"X": orig_var},
                                              outputs={"Out": splited_vars},
                                              attrs={
                                                  "sections":
                                                  height_sections,
                                                  RPC_OP_ROLE_ATTR_NAME:
                                                  DIST_OP_ROLE_ATTR_VALUE
                                              })
Y
update  
Yancey1989 已提交
2157 2158 2159
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2160

T
typhoonzero 已提交
2161 2162 2163 2164
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2165
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2178
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2179 2180
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2181 2182
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2183
                return param_shape
2184 2185 2186
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2187 2188 2189
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2190 2191
        elif op_type == "sgd":
            pass
2192 2193 2194 2195
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2196 2197
        return orig_shape

2198 2199
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2200
        orig_var_name = ""
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2211
        else:
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2234
            return None
2235 2236 2237 2238
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2239
        else:
2240
            merged_var_name = orig_varname
2241 2242

        merged_var = pserver_block.vars[merged_var_name]
2243
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
T
tangwei12 已提交
2244
        if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
2245
            vars2merge = []
2246
            for i in range(self.trainer_num):
2247
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2248
                                   (merged_var_name, i)
2249
                vars2merge.append(pserver_block.vars[per_trainer_name])
2250 2251 2252 2253
            optimize_block.append_op(type="sum",
                                     inputs={"X": vars2merge},
                                     outputs={"Out": merged_var},
                                     attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2254 2255 2256 2257 2258
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2259
        return merged_var
T
typhoonzero 已提交
2260

W
Wu Yi 已提交
2261 2262
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
2263 2264 2265 2266 2267
        local_param_bak = block.create_var(name="%s.local_bak" % param_var.name,
                                           shape=param_var.shape,
                                           type=param_var.type,
                                           dtype=param_var.dtype,
                                           persistable=False)
W
Wu Yi 已提交
2268
        # trainer_id_var is block local
2269 2270 2271 2272 2273
        trainer_id_var = block.create_var(name="@TRAINER_ID@",
                                          type=core.VarDesc.VarType.LOD_TENSOR,
                                          dtype=core.VarDesc.VarType.INT64,
                                          shape=[1],
                                          persistable=False)
W
Wu Yi 已提交
2274 2275 2276 2277 2278 2279

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
2280 2281 2282 2283 2284 2285
        block.append_op(type="ref_by_trainer_id",
                        inputs={
                            "X": ref_inputs,
                            "TrainerId": trainer_id_var
                        },
                        outputs={"Out": local_param_bak})
W
Wu Yi 已提交
2286 2287

        def __create_temp_var__():
2288 2289 2290 2291 2292
            return block.create_var(name=unique_name.generate("tmp_dc_output"),
                                    shape=param_var.shape,
                                    type=param_var.type,
                                    dtype=param_var.dtype,
                                    persistable=False)
W
Wu Yi 已提交
2293 2294

        o1 = __create_temp_var__()
2295 2296 2297 2298 2299 2300
        block.append_op(type="elementwise_sub",
                        inputs={
                            "X": param_var,
                            "Y": local_param_bak
                        },
                        outputs={"Out": o1})
W
Wu Yi 已提交
2301
        o2 = __create_temp_var__()
2302 2303 2304 2305 2306 2307
        block.append_op(type="elementwise_mul",
                        inputs={
                            "X": o1,
                            "Y": grad_var
                        },
                        outputs={"Out": o2})
W
Wu Yi 已提交
2308
        o3 = __create_temp_var__()
2309 2310 2311 2312 2313 2314
        block.append_op(type="elementwise_mul",
                        inputs={
                            "X": o2,
                            "Y": grad_var
                        },
                        outputs={"Out": o3})
W
Wu Yi 已提交
2315 2316
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
2317 2318 2319 2320 2321 2322
        block.append_op(type="elementwise_add",
                        inputs={
                            "X": grad_var,
                            "Y": o3
                        },
                        outputs={"Out": o4})
W
Wu Yi 已提交
2323 2324
        return o4

2325
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2326 2327
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2328
        program = optimize_block.program
T
typhoonzero 已提交
2329
        pserver_block = program.global_block()
2330
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2341 2342 2343 2344
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2345
        for key in opt_op.input_names:
T
typhoonzero 已提交
2346
            if key == "Grad":
W
Wu Yi 已提交
2347 2348 2349
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2360
            elif key == "Param":
W
Wu Yi 已提交
2361
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2362 2363
                if not param_block:
                    return
2364 2365 2366 2367
                tmpvar = pserver_block.create_var(name=param_block.name,
                                                  persistable=True,
                                                  dtype=param_block.dtype,
                                                  shape=param_block.shape)
T
typhoonzero 已提交
2368
                new_inputs[key] = tmpvar
2369
            elif key == "LearningRate":
2370
                # learning rate variable has already be created by non-optimize op,
2371
                # don't create it once again.
2372
                lr_varname = opt_op.input(key)[0]
2373
                if lr_varname in pserver_block.vars:
2374 2375 2376 2377 2378 2379 2380 2381 2382
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2383

T
typhoonzero 已提交
2384
        for key in opt_op.input_names:
2385
            new_shape = None
2386 2387 2388 2389
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2390
                continue
2391
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2392
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2393
            # update accumulator variable shape
2394 2395 2396 2397 2398 2399 2400
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape,
                                                        param_var.shape)
            tmpvar = pserver_block.create_var(name=var.name,
                                              persistable=var.persistable,
                                              dtype=var.dtype,
                                              shape=new_shape)
T
typhoonzero 已提交
2401
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2402

2403
        # change output's ParamOut variable
2404 2405
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2406
        outputs["ParamOut"] = new_inputs["Param"]
2407 2408 2409 2410
        optimize_block.append_op(type=opt_op.type,
                                 inputs=new_inputs,
                                 outputs=outputs,
                                 attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2411

2412 2413 2414
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
2415 2416
                str(new_inputs["Grad"].name) + ":" +
                str(new_inputs["Param"].name))
2417

2418 2419 2420 2421 2422 2423
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
T
tianshuo78520a 已提交
2424
            a@GRAD -> a@GRAD (a is not split)
2425
            fc_0.w_0 -> fc_0.w_0.block_0
T
tianshuo78520a 已提交
2426
            fc_0.w_0 -> fc_0.w_0 (weight is not split)
2427 2428
            _generated_var_123 -> None
        """
2429
        grad_block = None
M
minqiyang 已提交
2430
        for _, g in six.iteritems(var_dict):
2431
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2432
                # skip per trainer vars
2433
                if g.name.find(".trainer_") == -1:
T
tianshuo78520a 已提交
2434
                    # only param or grads have split blocks
2435 2436
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2437 2438
                        grad_block = g
                        break
2439 2440
        return grad_block

Q
Qiyang Min 已提交
2441 2442 2443
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2444
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2445 2446 2447 2448
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2449
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2450 2451 2452

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2453
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2454 2455 2456 2457
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2458
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2459

2460 2461 2462 2463
        return block.append_op(type=op.type,
                               inputs=inputs,
                               outputs=outputs,
                               attrs=op.all_attrs())
Q
Qiyang Min 已提交
2464 2465

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2466
        program = optimize_block.program
2467
        # Append the ops for parameters that do not need to be optimized/updated
2468 2469
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2470
        for key, varlist in six.iteritems(inputs):
2471 2472
            if not isinstance(varlist, list):
                varlist = [varlist]
2473 2474
            for i in range(len(varlist)):
                var = varlist[i]
T
tianshuo78520a 已提交
2475
                # for ops like clipping and weight decay, get the split var (xxx.block0)
2476
                # for inputs/outputs
2477
                grad_block = self._get_pserver_grad_param_var(
2478 2479
                    var,
                    program.global_block().vars)
2480
                if grad_block:
2481
                    varlist[i] = grad_block
2482
                elif var.name not in program.global_block().vars:
2483 2484 2485 2486 2487
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2488

2489 2490
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2491
        for key, varlist in six.iteritems(outputs):
2492 2493
            if not isinstance(varlist, list):
                varlist = [varlist]
2494 2495 2496
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2497 2498
                    var,
                    program.global_block().vars)
2499
                if grad_block:
2500
                    varlist[i] = grad_block
2501
                elif var.name not in program.global_block().vars:
2502 2503 2504 2505 2506
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2507

2508 2509 2510 2511
        return optimize_block.append_op(type=opt_op.type,
                                        inputs=inputs,
                                        outputs=outputs,
                                        attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2512

2513 2514 2515 2516
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2517
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2518
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2519 2520 2521 2522 2523 2524
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2525 2526
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2527 2528 2529 2530 2531 2532
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2533
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2534
        if "Param" in op.input_names and \
T
tangwei12 已提交
2535
                "LearningRate" in op.input_names:
2536 2537 2538 2539 2540 2541 2542
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2543
        if op.input("Param")[0] in param_names:
2544 2545 2546
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2547
                param = op.input("Param")[0]
T
typhoonzero 已提交
2548
                if same_or_split_var(n, param) and n != param:
2549 2550 2551
                    return True
            return False

T
typhoonzero 已提交
2552
    def _get_input_map_from_op(self, varmap, op):
2553
        """Returns a dict from op input name to the vars in varmap."""
2554
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2566
        """Returns a dict from op output name to the vars in varmap."""
2567
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2577 2578

    def _get_lr_ops(self):
2579 2580
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2581
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2582 2583 2584 2585
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
2602 2603
                    for i, op in enumerate(
                            self.startup_program.global_block().ops):
1
123malin 已提交
2604 2605
                        if op.type == 'fill_constant':
                            for key in op.output_names:
2606 2607 2608 2609 2610
                                if len(op.output(key)) == 1 and op.output(
                                        key)[0] == counter_var.name:
                                    self.startup_program.global_block(
                                    ).ops[i]._set_attr(
                                        'value', float(0.0 - self.trainer_num))
1
123malin 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2631 2632 2633 2634 2635
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2636 2637 2638 2639
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2640
            if self._is_optimizer_op(op):
2641 2642 2643 2644
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2645
        block = self.origin_program.global_block()
2646 2647 2648 2649 2650
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2651

2652 2653 2654 2655 2656
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2657
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2658 2659 2660 2661 2662 2663
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2664 2665
                    # we only need to append op for once
                    break
2666
        return lr_ops
Y
Yancey1989 已提交
2667

W
Wu Yi 已提交
2668 2669 2670 2671 2672
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2673 2674
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2675 2676 2677
            return True
        return False

Y
Yancey1989 已提交
2678
    def _get_optimize_pass(self):
2679
        """
2680
        Get optimizer operators, parameters and gradients from origin_program
2681 2682
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2683
            params_grads (dict): parameter->gradient.
2684
        """
Y
Yancey1989 已提交
2685 2686 2687
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2688 2689
        # tmp set to dedup
        optimize_params = set()
2690
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2691
        for op in block.ops:
W
Wu Yi 已提交
2692
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2693
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
2694
                # delete clip op from opt_ops when run in Parameter Server mode
C
Chengmo 已提交
2695 2696 2697 2698 2699 2700 2701 2702
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2703
                opt_ops.append(op)
2704 2705 2706 2707 2708 2709
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2710 2711
                        params_grads.append([
                            origin_var_dict[param_name],
2712
                            origin_var_dict[grad_name]
2713
                        ])
Y
Yancey1989 已提交
2714 2715
            else:
                pass
C
Chengmo 已提交
2716 2717 2718 2719 2720 2721

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2722
        return opt_ops, params_grads
C
Chengmo 已提交
2723 2724

    def _get_distribute_update_vars(self):
2725
        # TODO(chengmo): find more powerful and simple way to deal with these special situation
C
Chengmo 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads