launch.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56
                your_training_py (arg1 arg2 and all others)
"""

57 58 59
import copy
import os
import pathlib
60
import shutil
61
import sys
62
import tempfile
63
import time
64 65
from argparse import REMAINDER, ArgumentParser

66
from paddle import framework
K
Kim Yann 已提交
67
from paddle.distributed.fleet import cloud_utils, launch_utils
68
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
69
from paddle.distributed.fleet.launch_utils import (
70 71 72 73
    DeviceMode,
    DistributeMode,
    ParameterServerLauncher,
    block_windows_and_macos,
74 75 76 77 78 79 80 81 82 83
    check_backend,
    direct_start,
    find_free_ports,
    get_cluster,
    get_host_name_ip,
    get_logger,
    logger,
    start_local_trainers,
    terminate_local_procs,
    watch_local_trainers,
84
)
85

86 87
__all__ = []

88 89 90

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
91
    for arg, value in sorted(vars(args).items()):
92
        print(f"{arg}: {value}")
93 94 95 96 97 98 99 100 101 102 103
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
104 105
'''
    )
106
    base_group = parser.add_argument_group("Base Parameters")
107

108 109
    base_group.add_argument(
        "--log_dir",
110
        type=str,
111
        default="log",
112 113
        help="The path for each process's log. Default --log_dir=log/",
    )
X
xiongkun 已提交
114 115 116
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
117
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
张春乔 已提交
118
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|heter. "
119 120
        "Default value is auto which perfers nccl or bkcl.",
    )
121 122 123 124 125 126
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
127 128
        " bound to one or average number of gpus.",
    )
129

130 131 132
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
133
        default=None,
134 135
        help="run mode of job, can be:collective/ps/ps-heter",
    )
136

137
    if framework.core.is_compiled_with_cuda():
138 139 140 141 142 143
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
144
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu.",
145 146 147
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

148
    if framework.core.is_compiled_with_xpu():
149 150 151 152 153
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
154
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu.",
155 156
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
157

158 159 160 161 162 163 164 165
    base_group.add_argument(
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script",
    )
166

167 168 169 170 171 172 173 174 175
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
176 177
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..",
    )
178
    collective_group.add_argument(
179 180 181 182
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
183 184
        "to represent the cluster topology information for auto parallel.",
    )
185 186 187 188 189
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
190 191
        "to map processes to machines for auto parallel.",
    )
192 193 194 195
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
196 197
        help="Set true to enable the lazy launch for auto-parallel scenario.",
    )
198 199 200

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
201 202 203 204 205 206 207 208 209 210 211 212
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port"
    )
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port"
    )
    ps_group.add_argument(
        "--coordinators",
        type=str,
        default="",
        help="User defined coordinators ip:port",
    )
213 214 215 216
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
217 218
        help="User defined heter workers in each stage ip1:port1;ip2:port2",
    )
219 220 221 222
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
223 224
        help="User defined heter devices in each stage cpu;gpu;cpu",
    )
225 226

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
227 228 229
    ps_group.add_argument(
        "--coordinator_num", type=int, help="number of coordinators"
    )
230
    ps_group.add_argument("--server_num", type=int, help="number of servers")
231 232 233 234 235
    ps_group.add_argument(
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3",
    )
236
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
237

238 239
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
240 241 242 243 244 245
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port"
    )
    elastic_group.add_argument(
        "--elastic_pre_hook", type=str, help="elastic pre_hook shell cmd"
    )
246

247 248 249
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
250 251 252 253 254 255
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env"
    )
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force"
    )
256

K
kuizhiqing 已提交
257 258
    known_args, _ = parser.parse_known_args()
    return known_args
259 260


261
def get_cluster_from_args(args, device_mode, devices_per_proc):
262 263 264 265
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
266 267 268 269
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
270

271 272
    assert (
        node_ip in node_ips
273
    ), f"Can't find your local ip {{{node_ip}}} in node_ips: {{{node_ips}}}"
274 275
    node_rank = node_ips.index(node_ip)

276 277 278 279 280
    logger.debug(
        "parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
            node_ips, node_ip, node_rank
        )
    )
281 282

    free_ports = None
283 284 285 286 287
    if (
        not cloud_utils.use_paddlecloud()
        and len(node_ips) <= 1
        and os.environ.get('FLAGS_START_PORT') is None
    ):
288
        free_ports = find_free_ports(len(devices_per_proc))
289 290
        if free_ports is not None:
            free_ports = list(free_ports)
291
            logger.info(f"find free ports:{free_ports}")
292 293 294
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
295
            start_port = int(os.environ.get('FLAGS_START_PORT'))
296

297
        free_ports = list(range(start_port, start_port + len(devices_per_proc)))
298

299 300 301
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
302 303 304
    return get_cluster(
        node_ips, node_ip, trainer_endpoints, device_mode, devices_per_proc
    )
305 306


X
xiongkun 已提交
307 308 309 310
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
311 312
            % args.ips
        )
X
xiongkun 已提交
313
    if args.run_mode:
314 315 316
        assert (
            args.run_mode == 'cpuonly'
        ), "CPUONLY launch only support run mode is CPUONLY"
X
xiongkun 已提交
317 318 319 320 321
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


322
def get_cluster_info(args):
K
kuizhiqing 已提交
323
    # parse arguments, used for cloud-single-machine and local
324 325
    if args.backend == 'gloo':
        cpuonly_check(args)
326 327 328
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
329 330 331
        (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(
            args
        )
K
kuizhiqing 已提交
332
    trainers_num = cloud_utils.get_trainers_num()
333 334 335 336 337
    logger.debug(
        "parsed from args trainerss_num:{} mode:{} devices:{}".format(
            trainers_num, device_mode, devices_per_proc
        )
    )
K
kuizhiqing 已提交
338

339 340
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
341 342 343 344 345 346
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
347
    # auto mapping between processes and devices for auto-parallel
348
    if args.enable_auto_mapping:
349 350 351
        assert (
            args.cluster_topo_path is not None
        ), "The cluster topology must be provied when enabling auto mapping."
352
        rank_mapping_path = args.rank_mapping_path or os.getenv(
353 354
            "PADDLE_RANK_MAPPING_PATH"
        )
355 356 357
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
358 359
                enable_elastic(args, device_mode)
            )
360
            cwd = pathlib.Path().resolve()
361 362 363
            rank_mapping_path = os.path.join(
                cwd, "auto_parallel_rank_mapping.json"
            )
364 365 366 367 368 369
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
370 371 372 373 374 375 376 377
                args.enable_auto_mapping
            )
            (
                cluster,
                pod,
            ) = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode
            )
378 379 380
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
381 382
                enable_elastic(args, device_mode)
            )
383 384 385 386

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
387 388 389 390 391 392 393 394
                args.enable_auto_mapping
            )
            (
                cluster,
                pod,
            ) = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode
            )
K
kuizhiqing 已提交
395
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
396 397 398
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port
        )
399
        logger.debug(f"get cluster from cloud:{cluster}")
K
kuizhiqing 已提交
400 401
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
402 403 404
        cluster, pod = get_cluster_from_args(
            args, device_mode, devices_per_proc
        )
405
        logger.debug(f"get cluster from args:{cluster}")
406 407
    return cluster, pod

408

409
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
410 411 412 413
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
414
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
415
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
416 417 418 419 420 421 422
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
423

424 425 426 427 428 429 430 431
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs,
    )
K
kuizhiqing 已提交
432 433

    for idx, proc in enumerate(procs):
434
        print(f"launch proc_id:{proc.proc.pid} idx:{idx}")
435

K
kuizhiqing 已提交
436
    while True:
K
kuizhiqing 已提交
437 438
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
439

K
kuizhiqing 已提交
440 441
            if not alive:
                logger.info("Local processes completed.")
442
                logger.debug(f"POD info:{pod}")
K
kuizhiqing 已提交
443
                break
444

K
kuizhiqing 已提交
445 446 447 448 449
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
450
            sys.exit(1)
K
kuizhiqing 已提交
451

452 453
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
454

455

456 457 458 459 460 461 462
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
463
    # elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
464 465 466 467
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
468 469 470 471 472 473

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


474
def infer_backend(args):
475 476
    if args.backend != "auto":
        return
477
    if framework.core.is_compiled_with_cuda():
478
        args.backend = 'nccl'
479
    elif framework.core.is_compiled_with_xpu():
480 481 482 483 484
        args.backend = 'bkcl'
    else:
        args.backend = 'gloo'


485
def which_distributed_mode(args):
486
    infer_backend(args)  # modify the args.backend
487 488 489 490 491 492 493 494 495 496
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

497
    ps_args = [
498 499 500 501 502 503 504 505
        '--worker_num',
        '--server_num',
        '--heter_worker_num',
        '--servers',
        '--workers',
        '--heter_workers',
        '--heter_devices',
        '--http_port',
506
    ]
507
    collective_args = ['--ips']
508

509
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
510

511 512
    coordinator_args = ["--coordinator_num", "--coordinators"]

513 514 515 516
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
517 518
        co_arg
        for co_arg in collective_args
519 520
        if co_arg in " ".join(sys.argv[1:-1])
    ]
521 522 523 524 525 526

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

527 528 529 530
    if framework.core.is_compiled_with_cuda():
        accelerators = framework.core.get_cuda_device_count()
    elif framework.core.is_compiled_with_xpu():
        accelerators = framework.core.get_xpu_device_count()
531
    else:
532
        accelerators = 0
533

534 535
    if len(has_ps_args) > 0:
        logger.info(
536 537 538 539
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".format(
                has_ps_args, accelerators
            )
        )
540
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
541
        has_coordinator_args = list(set(has_ps_args) & set(coordinator_args))
542 543 544 545
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
546
    elif len(has_collective_args) > 0:
547 548
        logger.info(
            "Run collective mode. gpu arguments:{}, cuda count:{}".format(
549 550 551
                has_collective_args, accelerators
            )
        )
552
        return DistributeMode.COLLECTIVE
553
    else:
554
        if (
555 556
            not framework.core.is_compiled_with_cuda()
            and not framework.core.is_compiled_with_xpu()
557
        ):
X
xiongkun 已提交
558 559
            if args.servers:
                logger.warning(
K
Kim Yann 已提交
560
                    "Not found distinct arguments and not compiled with cuda or xpu. "
561 562
                    "But found args.servers not empty, default use ps mode"
                )
X
xiongkun 已提交
563 564 565
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
566 567
        else:
            logger.warning(
K
Kim Yann 已提交
568
                "Not found distinct arguments and compiled with cuda or xpu. "
569 570
                "Default use collective mode"
            )
571
            return DistributeMode.COLLECTIVE
572 573 574


def launch():
G
Guoxia Wang 已提交
575 576
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
577

G
Guoxia Wang 已提交
578 579 580 581 582 583 584 585 586
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
587
                             training_script ...
G
Guoxia Wang 已提交
588 589 590


    Base Parameters:
G
Guoxia Wang 已提交
591
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
592

G
Guoxia Wang 已提交
593
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
594

G
Guoxia Wang 已提交
595
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
596

G
Guoxia Wang 已提交
597
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
598 599

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
600

G
Guoxia Wang 已提交
601
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
602

G
Guoxia Wang 已提交
603 604
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

605
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
G
Guoxia Wang 已提交
606

G
Guoxia Wang 已提交
607
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
608 609

    Collective Parameters:
G
Guoxia Wang 已提交
610
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
611 612

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
613
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
614

G
Guoxia Wang 已提交
615
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
616

617
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
618 619 620 621 622

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

623
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
624

625
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
626 627 628 629

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
630
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
631

G
Guoxia Wang 已提交
632
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
633

G
Guoxia Wang 已提交
634
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
635 636 637 638 639 640 641 642 643 644

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
645

G
Guoxia Wang 已提交
646
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
647 648

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
649

G
Guoxia Wang 已提交
650 651 652 653
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
654 655
            # The parameters of --gpus and --ips must be consistent in each node.

656
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17
G
Guoxia Wang 已提交
657 658 659 660 661 662 663

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
664

G
Guoxia Wang 已提交
665 666 667 668
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
669
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
670

G
Guoxia Wang 已提交
671
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
672

G
Guoxia Wang 已提交
673 674 675 676
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
677
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
691
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
692

G
Guoxia Wang 已提交
693 694
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
695

G
Guoxia Wang 已提交
696 697 698 699
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
700
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
716
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
717

G
Guoxia Wang 已提交
718 719
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
720

G
Guoxia Wang 已提交
721 722 723 724
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
725
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
742

G
Guoxia Wang 已提交
743 744
    """

745 746 747 748
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
749
    if args.backend == 'auto':
750
        distribute_mode = which_distributed_mode(
751 752
            args
        )  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
753
    else:
754
        assert (
755
            args.run_mode == 'collective' or args.run_mode is None
756
        ), "When backend is not 'auto', run mode must be collective"
X
xiongkun 已提交
757 758 759
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

760
    # assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
761

X
xiongkun 已提交
762 763
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
764

765
    block_windows_and_macos(
766 767
        args.backend
    )  # raise error when using gloo on windows or macos
768

K
kuizhiqing 已提交
769 770 771
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
772

K
kuizhiqing 已提交
773 774
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
775
    else:
K
kuizhiqing 已提交
776
        launch_ps(args, distribute_mode)
777 778 779 780


if __name__ == "__main__":
    launch()