post_training_quantization.py 77.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
import os
import re
17 18
import math
import shutil
19 20
import logging
import numpy as np
21

22 23 24 25
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
26
from inspect import isgeneratorfunction
27 28 29
from .... import io
from .... import core
from .... import framework
30
from .... import unique_name
31
from ....executor import global_scope, Executor
32 33
from ....framework import IrGraph
from ....log_helper import get_logger
34
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
35
from .cal_kl_threshold import cal_kl_threshold
36
from .adaround import run_adaround
37
from . import utils
38

39
__all__ = [
40 41 42
    'PostTrainingQuantization',
    'WeightQuantization',
    'PostTrainingQuantizationProgram',
43
]
44

45 46 47
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
48 49


50 51 52 53 54 55 56 57
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
98 99
            attr_values
        ), "Different number of pass attributes and their values."
100 101 102 103 104 105 106 107 108
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


109
class PostTrainingQuantization(object):
110 111 112 113 114 115
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

116
    def __init__(self,
117 118
                 executor,
                 model_dir,
119
                 scope=None,
120 121
                 model_filename=None,
                 params_filename=None,
122
                 batch_generator=None,
123
                 sample_generator=None,
124
                 data_loader=None,
125 126 127
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
128
                 hist_percent=0.99999,
129
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
130
                 round_type='round',
131
                 learning_rate=0.001,
132
                 is_full_quantize=False,
X
XGZhang 已提交
133
                 bias_correction=False,
134
                 activation_bits=8,
135 136 137
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
138
                 onnx_format=False,
139
                 freeze_model=True,
140
                 optimize_model=False,
141
                 is_use_cache_file=False,
142
                 skip_tensor_list=None,
143 144 145 146 147
                 same_scale_tensor_list=None,
                 scale_trainable=False,
                 cache_dir=None,
                 scale_dict=None,
                 return_graph=False):
148
        '''
149
        Constructor.
150 151

        Args:
152
            executor(fluid.Executor): The executor to load, run and save the
153
                quantized model.
154 155
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
156 157 158 159 160 161 162 163 164
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
165 166 167 168 169 170 171 172
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
173 174 175
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
176 177 178 179
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
180 181 182 183
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
184 185 186 187 188 189 190
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
191 192
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
193
                "mul"].
194
            round_type(str, optional): The method of converting the quantized weights
195
                value float->int. Currently supports ['round', 'adaround'] methods.
196 197
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
198
            learning_rate(float, optional): The learning rate of adaround method.
199
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
200
                apply quantization to all supported quantizable op type. If set
201 202
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
203 204
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
205
            activation_bits(int): quantization bit number for activation.
206 207 208 209 210 211 212 213 214 215 216 217
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
218 219
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
220 221 222 223 224 225
            freeze_model(bool): Whether to convert quantized and trained ``program`` to final 
                quantized ``program``. Default: True.
            skip_tensor_list(list): List of skip quant tensor name. Default: None.
            same_scale_tensor_list(list(list)): The list of tensor keep same scale in the outermost 
                list, the final scale about every list is the max of the scale in the list 
                of tensor. Default: None.
226 227 228 229 230 231 232 233
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
234
            scale_trainable(bool, optional): whether scale can be train.
235 236
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
237 238 239
        Returns:
            None

240 241 242 243 244 245
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
246 247 248 249 250 251 252 253 254
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
255
            # sample generator must return a sample every time. The reference
256 257 258
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
259 260 261
            batch_size = 10
            batch_nums = 10
            algo = "KL"
262
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
263 264
            ptq = PostTrainingQuantization(
                        executor=exe,
265 266 267 268
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
269 270 271 272 273 274 275
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
276

277 278 279 280
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
281
        self._support_algo_type = [
H
handiz 已提交
282
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max', 'ptf'
X
XGZhang 已提交
283
        ]
284
        assert round_type in ['adaround', 'round']
285 286
        self._round_type = round_type
        self._learning_rate = learning_rate
287
        self._dynamic_quantize_op_type = ['lstm']
288
        self._support_quantize_op_type = \
289 290
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
291
                self._dynamic_quantize_op_type))
292 293

        # Check inputs
294
        assert executor is not None, "The executor cannot be None."
295
        assert any([gen is not None] for gen in [sample_generator,
296 297 298 299 300
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
301 302
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
H
handiz 已提交
303
            "The algo should be KL, hist, mse, avg, abs_max, min_max or ptf."
304 305 306 307 308 309 310 311
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
312
        self._bias_correction = bias_correction
313
        self._executor = executor
314
        self._scope = global_scope() if scope == None else scope
315 316 317
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
318
        self._sample_generator = sample_generator
319
        self._batch_generator = batch_generator
320 321 322
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
323
        self._hist_percent = hist_percent
324 325 326 327
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
328
        self._onnx_format = onnx_format
329
        self._skip_tensor_list = skip_tensor_list
330
        self._is_full_quantize = is_full_quantize
331
        if is_full_quantize:
332
            self._quantizable_op_type = self._support_quantize_op_type
333 334 335
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
336
                assert op_type in self._support_quantize_op_type, \
337
                    op_type + " is not supported for quantization."
338
        self._optimize_model = optimize_model
339

340
        # Define variables
341 342 343 344
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
345
        self._data_loader = data_loader
346

347
        self._out_scale_op_list = utils._out_scale_op_list
348 349
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
350
        self._weight_op_pairs = {}
X
XGZhang 已提交
351
        # The vars for alog = KL or hist
352 353
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
354
        self._sampling_data = {}
X
XGZhang 已提交
355
        self._quantized_var_threshold = {}
356 357
        self._histogram_bins = 2048
        # The vars for algo = min_max
358 359
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
360 361 362
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
363
        self._best_calibration_loss = {}
X
XGZhang 已提交
364 365
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
366 367 368 369 370
        self._same_scale_tensor_list = same_scale_tensor_list
        self._freeze_model = freeze_model
        self._scale_trainable = scale_trainable
        self._scale_dict = scale_dict
        self._return_graph = return_graph
371 372 373

    def quantize(self):
        '''
374 375 376
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
377 378 379 380

        Args:
            None
        Returns:
381 382
            the program of quantized model.
        '''
383
        self._load_model_data()
384
        self._collect_target_varnames()
385
        self._set_activation_persistable()
386

X
XGZhang 已提交
387
        if self._algo in ["KL", "hist"]:
388
            batch_id = 0
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
            with tqdm(
                    total=self._batch_nums,
                    bar_format=
                    'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(total=self._batch_nums,
                  bar_format=
                  'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
412 413 414 415 416 417
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
418
                self._sampling()
419
                batch_id += 1
420
                t.update()
421 422
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
423

X
XGZhang 已提交
424 425 426 427 428 429
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
430

431
        if self._round_type == 'adaround':
432 433 434 435 436
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
437
            self._save_input_threhold()
438 439 440 441
        else:
            self._update_program()

        # save out_threshold for quantized ops.
442
        self._save_output_threshold()
443

444 445 446 447
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

465 466 467 468 469
        if not self._return_graph:
            return self._program
        else:
            main_graph = IrGraph(core.Graph(self._program.desc), for_test=True)
            return main_graph
470

471
    def _adaround_apply(self):
472
        assert self._algo != "min_max", "The algo should not be min_max."
473 474 475 476
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
477 478 479 480 481 482 483 484 485 486
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
487
                     bias_correction=self._bias_correction,
488
                     lr=self._learning_rate)
489

490 491 492 493
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
494 495 496 497
        '''
        Save the quantized model to the disk.

        Args:
498 499 500 501 502 503 504
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
505
        Returns:
506 507
            None
        '''
508
        clip_extra = True if self._onnx_format else False
509 510 511 512 513 514 515 516
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
                                clip_extra=clip_extra)
517
        _logger.info("The quantized model is saved in " + save_model_path)
518

519
    def _load_model_data(self):
520
        '''
521
        Load model and set data loader.
522
        '''
523 524 525 526 527 528 529
        if self._program is None:
            _logger.info("Load model and set data loader ...")
            [self._program, self._feed_list, self._fetch_list] = \
                io.load_inference_model(dirname=self._model_dir,
                                        executor=self._executor,
                                        model_filename=self._model_filename,
                                        params_filename=self._params_filename)
530 531 532 533

        if self._optimize_model:
            self._optimize_fp32_model()

534 535
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
536 537 538

        if self._data_loader is not None:
            return
539 540 541 542
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
543
        if self._sample_generator is not None:
544 545 546 547
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
548
        elif self._batch_generator is not None:
549 550
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
551

552 553 554 555 556 557 558 559
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
560 561
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
562 563 564 565
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

566 567
        self._program = graph.to_program()

568
    def _collect_target_varnames(self):
569 570 571 572
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
573
        # TODO(juncaipeng), consider the name_scope of skip_quant
574
        _logger.info("Collect quantized variable names ...")
575
        self._quantized_op_pairs = {}
576

577
        def collect_var_name(var_name_list, persistable_var_names, op_type):
578 579 580
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
581
                    self._weight_op_pairs[var_name] = op_type
582 583 584
                else:
                    self._quantized_act_var_name.add(var_name)

585
        persistable_var_names = _all_persistable_var_names(self._program)
586 587
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
588 589 590 591 592 593
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

594 595 596 597 598 599 600
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
601 602 603 604
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
605
                    # collect quanted op output var name
606 607
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
608 609 610
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
611 612
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
613 614
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
615 616 617 618 619 620

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
621 622 623 624
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

625 626 627 628
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
629
        to_erase = []
630 631 632
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
633
                to_erase.append(var.name)
634

635
    def _sampling(self):
636
        '''
637
        Sample the min/max, abs_max or histogram in every iterations.
638 639
        '''
        if self._algo == "abs_max":
640
            self._sample_abs_max()
X
XGZhang 已提交
641 642
        elif self._algo == "avg":
            self._sample_avg()
643
        elif self._algo == "min_max":
644
            self._sample_min_max()
X
XGZhang 已提交
645 646
        elif self._algo == "mse":
            self._sample_mse()
647 648
        elif self._algo == "emd":
            self._sample_emd()
H
handiz 已提交
649 650
        elif self._algo == "ptf":
            self._sample_ptf()
X
XGZhang 已提交
651
        elif self._algo in ["KL", "hist"]:
652
            self._sample_histogram()
653

X
XGZhang 已提交
654 655 656
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
657
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
658 659 660 661 662
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
663
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
664 665 666 667 668 669 670 671 672 673
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
674
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
675 676
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
677
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
678
            s = 0.3
679 680
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
681 682 683 684
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
685
                if self._onnx_format:
686
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
687 688 689 690 691 692
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
X
XGZhang 已提交
693
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
694 695 696 697 698 699 700
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
701
                var_tensor = utils.load_variable_data(self._scope, var_name)
702 703 704 705 706
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
707
                            var_name] in utils._channelwise_quant_axis1_ops:
708 709 710 711 712 713 714 715 716 717
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
718
            var_tensor = utils.load_variable_data(self._scope, var_name)
719 720 721 722 723 724 725 726 727 728
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
729
                if self._onnx_format:
730
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
731 732 733 734 735 736
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
737 738 739 740 741
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
742 743 744 745 746
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
747
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
748 749 750 751 752
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
753
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
754 755 756 757 758 759 760 761 762 763
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
764
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
765 766 767 768 769 770 771 772
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

773
    def _sample_abs_max(self):
X
XGZhang 已提交
774
        if self._quantized_threshold == {}:
775
            for var_name in self._quantized_weight_var_name:
776
                var_tensor = utils.load_variable_data(self._scope, var_name)
777 778 779 780
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
781
                    if self._weight_op_pairs[
782
                            var_name] in utils._channelwise_quant_axis1_ops:
783 784 785 786 787 788 789
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
790
                self._quantized_threshold[var_name] = abs_max_value
791 792

        for var_name in self._quantized_act_var_name:
793
            var_tensor = utils.load_variable_data(self._scope, var_name)
794
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
795 796 797
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
798

799
    def _sample_min_max(self):
800 801
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
802
                var_tensor = utils.load_variable_data(self._scope, var_name)
803 804 805 806 807 808
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
809
                    if self._weight_op_pairs[
810
                            var_name] in utils._channelwise_quant_axis1_ops:
811 812 813 814 815 816 817 818 819 820 821
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
822
            var_tensor = utils.load_variable_data(self._scope, var_name)
823 824 825 826 827 828 829 830
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
831

832 833
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
834
            var_tensor = utils.load_variable_data(self._scope, var_name)
835 836 837 838 839
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

H
handiz 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    def l2_loss(self, gt, pred):
        return ((gt - pred)**2).mean()

    def _sample_ptf(self):
        """
        The following code are modified from:
        https://github.com/megvii-research/FQ-ViT/
        """
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
                var_tensor = utils.load_variable_data(self._scope, var_name)
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in utils._channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = utils.load_variable_data(self._scope, var_name)
            abs_max_value = float(np.max(np.abs(var_tensor)))
            q_max = 2**(self._activation_bits - 1) - 1
            scale8 = abs_max_value / q_max
            scale4 = scale8 / 2
            scale2 = scale4 / 2
            scale1 = scale2 / 2
            quant_dequant_var_scale1 = np.clip(np.round(var_tensor / scale1), 0,
                                               q_max) * scale1
            quant_dequant_var_scale2 = np.clip(np.round(var_tensor / scale2), 0,
                                               q_max) * scale2
            quant_dequant_var_scale4 = np.clip(np.round(var_tensor / scale4), 0,
                                               q_max) * scale4
            quant_dequant_var_scale8 = np.clip(np.round(var_tensor / scale8), 0,
                                               q_max) * scale8
            score1 = self.l2_loss(var_tensor, quant_dequant_var_scale1)
            score2 = self.l2_loss(var_tensor, quant_dequant_var_scale2)
            score4 = self.l2_loss(var_tensor, quant_dequant_var_scale4)
            score8 = self.l2_loss(var_tensor, quant_dequant_var_scale8)
            score = [score1, score2, score4, score8]
            mask = 2**score.index(min(score))
            scale = scale1 * mask
            threshold = q_max * scale
            self._quantized_threshold[var_name] = threshold

892 893 894 895 896 897
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
898 899 900
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
901
                    for var_name in utils._get_op_input_var_names(op):
902 903 904 905 906 907 908
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
909

910
    def _collect_activation_abs_min_max(self):
911
        '''
912 913
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
914
        '''
915
        for var_name in self._quantized_act_var_name:
916
            var_tensor = utils.load_variable_data(self._scope, var_name)
917 918 919 920
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
921 922 923
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
924 925 926 927 928 929 930 931 932 933 934 935 936 937
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
938 939 940
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
941
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
942

X
XGZhang 已提交
943
    def _calculate_kl_hist_threshold(self):
944
        '''
X
XGZhang 已提交
945
        Calculate the KL or hist threshold of quantized variables.
946
        '''
X
XGZhang 已提交
947 948
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
949 950

        # Abs_max threshold for weights
951
        for var_name in self._quantized_weight_var_name:
952
            weight_data = utils.load_variable_data(self._scope, var_name)
953
            if self._weight_quantize_type == "abs_max":
954
                weight_threshold = float(np.max(np.abs(weight_data)))
955 956
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
957
                if self._weight_op_pairs[
958
                        var_name] in utils._channelwise_quant_axis1_ops:
959 960 961 962 963 964 965
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
966
            self._quantized_var_threshold[var_name] = weight_threshold
967

968 969
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
970
            if self._algo == "KL":
971
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
972
                self._quantized_var_threshold[var_name] = \
973
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
974 975 976
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
977 978 979

    def _update_program(self):
        '''
980 981
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
982
        Besides, save all threshold to the scale var node.
983
        '''
984
        _logger.info("Update the program ...")
985 986
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

987
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
988
        major_quantizable_op_types = []
989
        for op_type in utils._weight_supported_quantizable_op_type:
990
            if op_type in self._quantizable_op_type:
991
                major_quantizable_op_types.append(op_type)
992 993 994 995 996 997 998 999
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
1000 1001
                quantizable_op_type=major_quantizable_op_types,
                is_test=not self._scale_trainable)
1002 1003 1004 1005 1006 1007 1008 1009
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
1010 1011
                quantizable_op_type=major_quantizable_op_types,
                is_test=not self._scale_trainable)
1012 1013 1014 1015 1016 1017

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
1018 1019

        # use AddQuantDequantPass to insert fake_quant_dequant op
1020
        minor_quantizable_op_types = []
1021
        for op_type in utils._act_supported_quantizable_op_type:
1022
            if op_type in self._quantizable_op_type:
1023
                minor_quantizable_op_types.append(op_type)
1024 1025 1026 1027
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
1028 1029
                quantizable_op_type=minor_quantizable_op_types,
                is_test=not self._scale_trainable)
1030 1031 1032 1033 1034
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
1035 1036
                is_full_quantized=self._is_full_quantize,
                is_test=not self._scale_trainable)
1037 1038 1039 1040

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
1041

X
XGZhang 已提交
1042
        # save threshold to scale var node
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        if self._scale_dict is None:
            if self._algo in ["KL", "hist"]:
                scale_dict = self._quantized_var_threshold
            else:
                scale_dict = self._quantized_threshold

            if self._same_scale_tensor_list is not None:
                for tensor_list in self._same_scale_tensor_list:
                    max_scale = None
                    tmp_tensor_list = []
                    for tensor_name in tensor_list:
                        if '#' in tensor_name:
                            real_tensor_name, opera, scalar = tensor_name.split(
                                '#')
                            if opera == '*':
                                scale_dict[real_tensor_name] = float(
                                    scale_dict[real_tensor_name]) * float(
                                        scalar)
                            elif opera == '/':
                                scale_dict[real_tensor_name] = float(
                                    scale_dict[real_tensor_name]) / float(
                                        scalar)
                            max_scale = scale_dict[
                                real_tensor_name] if max_scale is None else max(
                                    max_scale, scale_dict[real_tensor_name])
                        else:
                            max_scale = scale_dict[
                                tensor_name] if max_scale is None else max(
                                    max_scale, scale_dict[tensor_name])

                    for tensor_name in tensor_list:
                        if '#' in tensor_name:
                            real_tensor_name, opera, scalar = tensor_name.split(
                                '#')
                            if opera == '*':
                                scale_dict[
                                    real_tensor_name] = max_scale / float(
                                        scalar)
                            elif opera == '/':
                                scale_dict[
                                    real_tensor_name] = max_scale * float(
                                        scalar)
                        else:
                            scale_dict[tensor_name] = max_scale
            self._scale_dict = scale_dict

        for key, val in self._scale_dict.items():
H
handiz 已提交
1090
            utils.set_variable_data(self._scope, self._place, key + "@scale",
1091 1092
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
H
handiz 已提交
1093
                                    key + ".quant_dequant@scale",
1094
                                    np.array([val], dtype=np.float32))
1095

1096 1097
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
            if self._freeze_model:
                freeze_pass = QuantizationFreezePass(
                    scope=self._scope,
                    place=self._place,
                    bias_correction=self._bias_correction,
                    weight_bits=self._weight_bits,
                    round_type=self._round_type,
                    activation_bits=self._activation_bits,
                    weight_quantize_type=self._weight_quantize_type,
                    quantizable_op_type=major_quantizable_op_types)

                for sub_graph in graph.all_sub_graphs():
                    sub_graph._for_test = True
                    freeze_pass.apply(sub_graph)
1112 1113 1114 1115 1116
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
1117

1118 1119
        self._program = graph.to_program()

1120
    def _save_output_threshold(self):
1121
        '''
1122
        Save output threshold to the quantized op.
1123
        '''
1124
        self._calibration_scales = {}
1125 1126 1127 1128 1129 1130

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
            if self._onnx_format:
                # For easy extension, every var_node set a dict to save parameters of quant.
                self._calibration_scales[var_name] = {}
                self._calibration_scales[var_name]['scale'] = threshold_map[
                    var_name]
            else:
                op_node._set_attr(out_info_name, threshold_map[var_name])
                op_node._set_attr("with_quant_attr", True)
                if op_node.type in self._quantizable_op_type:
                    op._set_attr("quantization_type", quantized_type)
1141 1142

        def analysis_and_save_info(op_node, out_var_name):
1143
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1144 1145
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1146
            if self._algo == "KL":
1147
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1148 1149
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1150
                save_info(
X
XGZhang 已提交
1151
                    op_node, out_var_name, self._quantized_var_threshold,
1152 1153
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1154 1155 1156 1157
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1158
                save_info(
X
XGZhang 已提交
1159
                    op_node, out_var_name, self._quantized_var_threshold,
1160
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1161 1162
                    "post_hist")

H
handiz 已提交
1163
            elif self._algo in ["avg", "abs_max", "mse", "emd", "ptf"]:
X
XGZhang 已提交
1164 1165 1166 1167 1168 1169
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1170 1171 1172 1173 1174 1175
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1176 1177
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1178 1179
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1180
                    out_var_names = utils._get_op_output_var_names(op)
1181 1182
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1203
            for var_name in utils._get_op_input_var_names(op):
1204
                if var_name in persistable_var_names:
1205
                    var_data = utils.load_variable_data(self._scope, var_name)
1206
                    threshold = float(np.max(np.abs(var_data)))
1207
                    argname, index = utils._get_input_name_index(op, var_name)
1208 1209 1210
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1211
                    op._set_attr("with_quant_attr", True)
1212

X
XGZhang 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
class PostTrainingQuantizationProgram(PostTrainingQuantization):

    def __init__(self,
                 executor,
                 program,
                 feed_list=None,
                 fetch_list=None,
                 scope=None,
                 batch_generator=None,
                 sample_generator=None,
                 data_loader=None,
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
                 hist_percent=0.99999,
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
                 round_type='round',
                 learning_rate=0.001,
                 is_full_quantize=False,
                 bias_correction=False,
                 activation_bits=8,
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
                 onnx_format=False,
                 freeze_model=True,
                 optimize_model=False,
                 is_use_cache_file=False,
                 skip_tensor_list=None,
                 same_scale_tensor_list=None,
                 scale_trainable=False,
                 cache_dir=None,
                 scale_dict=None,
                 return_graph=True):
        super().__init__(executor, scope, None, None, None, batch_generator,
                         sample_generator, data_loader, batch_size, batch_nums,
                         algo, hist_percent, quantizable_op_type, round_type,
                         learning_rate, is_full_quantize, bias_correction,
                         activation_bits, weight_bits, activation_quantize_type,
                         weight_quantize_type, onnx_format, freeze_model,
                         optimize_model, is_use_cache_file, skip_tensor_list,
                         same_scale_tensor_list, scale_trainable, cache_dir,
                         scale_dict, return_graph)
        self._program = program
        assert feed_list is not None, \
            "Feed list should not be None."
        assert fetch_list is not None, \
            "Fetch list should not be None."
        self._feed_list = feed_list
        self._fetch_list = fetch_list


1282 1283
class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1284
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1311
                               weight_bits=8,
1312 1313
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1333 1334
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1335 1336 1337 1338 1339 1340 1341
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1342 1343 1344 1345 1346 1347 1348 1349 1350
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1351
                "Input error:" + op_type + \
1352
                " is not supported for weight quantization."
1353
        assert weight_bits in [8, 16], \
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1367 1368 1369 1370 1371
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1431 1432 1433 1434 1435 1436 1437 1438 1439
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1451 1452 1453 1454 1455 1456 1457 1458
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1459 1460 1461 1462 1463 1464 1465 1466 1467
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1487

1488 1489 1490 1491 1492 1493 1494
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1505
        weight_data = utils.load_variable_data(scope, var_name)
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1519 1520
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1521 1522 1523
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1524 1525
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1526 1527 1528 1529 1530

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1531
        op._set_attr("with_quant_attr", True)
1532

1533 1534 1535
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1536 1537 1538 1539 1540 1541 1542
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1543
        weight_data = utils.load_variable_data(scope, var_name)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1557 1558
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1569 1570
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1571 1572 1573 1574 1575

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1576
        op._set_attr("with_quant_attr", True)
1577 1578 1579 1580 1581 1582 1583 1584

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1585 1586
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1599 1600
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1613 1614
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1627 1628
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1629 1630 1631 1632 1633
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1634 1635
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1636 1637 1638
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width